Meng Jiawei, Gui Yaliang, Nouri Behrouz Movahhed, Ma Xiaoxuan, Zhang Yifei, Popescu Cosmin-Constantin, Kang Myungkoo, Miscuglio Mario, Peserico Nicola, Richardson Kathleen, Hu Juejun, Dalir Hamed, Sorger Volker J
Department of Electrical and Computer Engineering, George Washington University, Washington DC, 20052, USA.
Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Light Sci Appl. 2023 Aug 1;12(1):189. doi: 10.1038/s41377-023-01213-3.
Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/μm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.
光子随机存取存储器(P-RAM)是片上非冯·诺依曼光子计算的关键组件,可消除数据链路中的光电转换损耗。新兴的相变材料(PCM)已展现出多级存储能力,但目前的演示仍存在较高的光学损耗,且需要繁琐的写入-擦除方法,这增加了功耗和系统封装的挑战。在此,我们展示了一种基于宽带透明相变材料(Ge2Sb2Se5,GSSe)的多态电编程低损耗非易失性光子存储器,该材料在非晶态下具有超低吸收。我们在绝缘体上硅平台上演示了一种零静态功耗且电编程的多位P-RAM,其具有高达0.2 dB/μm的高效幅度调制和4位存储器仅0.12 dB的超低插入损耗,与其他基于相变材料的光子存储器相比,信号与损耗比提高了100倍。我们进一步优化了双微加热器的定位,验证了性能权衡。通过实验,我们展示了50万次的循环测试,证明了这种材料和器件的稳健性。低损耗光子状态保持为光子功能和可编程电路增添了关键特性,影响着包括神经网络、激光雷达和传感器等在内的许多应用。