Ha Chan Man, Escamilla-Trevino Luis, Zhuo Chunliu, Pu Yunqiao, Bryant Nathan, Ragauskas Arthur J, Xiao Xirong, Li Ying, Chen Fang, Dixon Richard A
BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA.
Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Biotechnol Biofuels Bioprod. 2023 Jun 12;16(1):100. doi: 10.1186/s13068-023-02339-7.
C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula.
We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin.
C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin.
C-木质素是松柏醇的同聚物,存在于多种植物物种的种皮中,包括香草兰、各种仙人掌以及观赏植物醉蝶花。由于其独特的化学和物理性质,人们对将C-木质素作为生物加工的高价值副产品导入生物能源作物的细胞壁有着浓厚兴趣。我们利用对发育中的醉蝶花种皮进行转录组分析得到的信息,提出了在异源系统中利用模式豆科植物蒺藜苜蓿的毛状根对C-木质素进行工程改造的策略。
我们在咖啡酸/5-羟基松柏醛3/5-O-甲基转移酶(comt)突变体背景下,通过基因过表达和RNAi介导的敲低相结合的方法,系统地测试了C-木质素工程改造策略,并通过分析木质素组成和单木质醇途径代谢物的谱图来监测结果。在所有情况下,C-木质素积累都需要强烈下调咖啡酰辅酶A 3-O-甲基转移酶(CCoAOMT)并伴有COMT功能丧失。在comt突变体毛状根中过表达卷柏阿魏酸5-羟化酶(SmF5H)基因,得到的株系意外地积累了高水平的S-木质素。
在CCoAOMT表达降低最显著的株系中,C-木质素积累量高达总木质素的15%,这需要同时强烈下调COMT和CCoAOMT,但在蒺藜苜蓿毛状根中并不需要表达对3,4-二羟基取代底物具有偏好性的异源漆酶、肉桂醇脱氢酶(CAD)或肉桂酰辅酶A还原酶(CCR)。细胞壁分级分离研究表明,工程化的C单元不存在于与大部分G-木质素形成的杂聚物中。