Suppr超能文献

漆酶 8 对咖啡醇的底物特异性有助于 C-木质素生物合成在种子壳中的聚合。

Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of .

机构信息

BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203.

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

出版信息

Plant Cell. 2020 Dec;32(12):3825-3845. doi: 10.1105/tpc.20.00598. Epub 2020 Oct 9.

Abstract

Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the ornamental plant , lignin biosynthesis in the seed coat switches from guaiacyl lignin to C-lignin at ∼12 d after pollination. Here we found that the transcript profile of the laccase gene parallels the accumulation of C-lignin during seed coat development. Recombinant ChLAC8 oxidizes caffeyl and sinapyl alcohols, generating their corresponding dimers or trimers in vitro, but cannot oxidize coniferyl alcohol. We propose a basis for this substrate preference based on molecular modeling/docking experiments. Suppression of expression led to significantly reduced C-lignin content in the seed coats of transgenic Cleome plants. Feeding of C-caffeyl alcohol to the Arabidopsis () - mutant resulted in no incorporation of C into C-lignin, but expressing in this genetic background led to appearance of C-lignin with >40% label incorporation. These results indicate that ChLAC8 is required for C-lignin polymerization and determines lignin composition when caffeyl alcohol is available.

摘要

儿茶素木质素 (C-木质素) 是咖啡醇的线性均聚物,存在于多种植物物种的种皮中。其特性使其成为碳纤维和高价值化学品的天然来源,但咖啡醇在植物体内聚合的机制仍不清楚。在观赏植物中,授粉后约 12 天,种皮中的木质素生物合成从愈创木基木质素转变为 C-木质素。在这里,我们发现漆酶基因的转录谱与种皮发育过程中 C-木质素的积累呈平行关系。重组 ChLAC8 在体外氧化咖啡醇和松柏醇,生成它们相应的二聚体或三聚体,但不能氧化 coniferyl 醇。我们根据分子建模/对接实验为这种底物偏好提出了一个依据。ChLAC8 表达的抑制导致转基 Cleome 植物种皮中 C-木质素含量显著降低。向拟南芥 () - 突变体中添加 C-儿茶酚醇不会将 C 掺入 C-木质素中,但在这种遗传背景下表达 ChLAC8 会导致出现 C-木质素,其标记掺入率超过 40%。这些结果表明 ChLAC8 是 C-木质素聚合所必需的,并且在有咖啡醇存在时决定木质素的组成。

相似文献

2
Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana.
Plant J. 2019 Aug;99(3):506-520. doi: 10.1111/tpj.14340. Epub 2019 May 17.
3
Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity.
Sci Adv. 2022 Mar 11;8(10):eabm8145. doi: 10.1126/sciadv.abm8145. Epub 2022 Mar 9.
4
Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats.
Plant Cell. 2013 Jul;25(7):2587-600. doi: 10.1105/tpc.113.113142. Epub 2013 Jul 31.
5
A polymer of caffeyl alcohol in plant seeds.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1772-7. doi: 10.1073/pnas.1120992109. Epub 2012 Jan 17.
6
CCoAOMT suppression modifies lignin composition in Pinus radiata.
Plant J. 2011 Jul;67(1):119-29. doi: 10.1111/j.1365-313X.2011.04580.x. Epub 2011 Apr 26.
8
MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis.
Plant Biotechnol J. 2014 Oct;12(8):1132-42. doi: 10.1111/pbi.12222. Epub 2014 Jun 29.
9
Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis.
Plant Cell. 2013 Oct;25(10):3976-87. doi: 10.1105/tpc.113.117770. Epub 2013 Oct 18.

引用本文的文献

1
Annual Dynamic Changes in Lignin Synthesis Metabolites in 'Jinsi'.
Metabolites. 2025 Jul 22;15(8):493. doi: 10.3390/metabo15080493.
2
Factors underlying a latitudinal gradient in the S/G lignin monomer ratio in natural poplar variants.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2503491122. doi: 10.1073/pnas.2503491122. Epub 2025 Aug 20.
5
Heterologous expression of gene in hairy roots and its role in secondary metabolism under PEG-induced osmotic stress condition in L.
Physiol Mol Biol Plants. 2024 Oct;30(10):1611-1629. doi: 10.1007/s12298-024-01516-8. Epub 2024 Oct 15.
7
The Laccase Family Gene Participates in Resistance to Infection in Tea Plants.
Plants (Basel). 2024 Mar 19;13(6):884. doi: 10.3390/plants13060884.
8
Systematic approaches to C-lignin engineering in Medicago truncatula.
Biotechnol Biofuels Bioprod. 2023 Jun 12;16(1):100. doi: 10.1186/s13068-023-02339-7.
9
Valorization of homogeneous linear catechyl lignin: opportunities and challenges.
RSC Adv. 2023 Apr 24;13(19):12750-12759. doi: 10.1039/d3ra01546g.

本文引用的文献

1
Laccase3-based extracellular domain provides possible positional information for directing Casparian strip formation in .
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15400-15402. doi: 10.1073/pnas.2005429117. Epub 2020 Jun 22.
2
Structural basis for monolignol oxidation by a maize laccase.
Nat Plants. 2020 Mar;6(3):231-237. doi: 10.1038/s41477-020-0595-5. Epub 2020 Mar 2.
5
Lignin biosynthesis: old roads revisited and new roads explored.
Open Biol. 2019 Dec;9(12):190215. doi: 10.1098/rsob.190215. Epub 2019 Dec 4.
7
Passive membrane transport of lignin-related compounds.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23117-23123. doi: 10.1073/pnas.1904643116. Epub 2019 Oct 28.
10
Ectopic Defense Gene Expression Is Associated with Growth Defects in Lignin Pathway Mutants.
Plant Physiol. 2019 Sep;181(1):63-84. doi: 10.1104/pp.19.00533. Epub 2019 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验