School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
J Phys Chem B. 2023 Jun 29;127(25):5702-5717. doi: 10.1021/acs.jpcb.3c01278. Epub 2023 Jun 13.
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
近四分之三的真核生物 DNA 被核小体占据,核小体是一种包含八聚体组蛋白核心蛋白和 ∼150 个碱基对 DNA 的蛋白质-DNA 复合物。核小体不仅作为 DNA 压缩载体,其动力学还调节非组蛋白的 DNA 结合位点的可及性,从而控制决定细胞身份和命运的调控过程。在这里,我们通过对搜索过程的简单离散状态随机描述,提出了一个分析框架来分析核小体动力学在转录因子的靶标搜索过程中的作用。通过将与蛋白质和核小体动力学相关的实验确定的动力学速率作为唯一输入,我们分别在核小体呼吸和滑动动力学期间通过首次通过概率计算来估计蛋白质的靶标搜索时间。尽管核小体动力学都允许对原本被组蛋白蛋白封闭的 DNA 位点进行瞬时访问,但我们的结果表明,在进行呼吸和滑动动力学的核小体上,蛋白质的搜索机制存在显著差异。此外,我们确定了影响搜索效率的分子因素,并展示了这些因素如何共同描绘出基因调控的高度动态景观。我们的分析结果使用广泛的蒙特卡罗模拟进行了验证。