Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria.
J Biomol NMR. 2023 Aug;77(4):131-147. doi: 10.1007/s10858-023-00417-4. Epub 2023 Jun 13.
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative "Stablelabel" containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in "Stablelabel" lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
无细胞(CF)合成具有高生产力的大肠杆菌裂解物是一种方便的方法,可用于生产用于 NMR 研究的标记蛋白。尽管 CF 裂解物中的代谢活性降低,但供应的同位素标记仍然存在明显的混乱。最成问题的是氨基酸 L-Asp、L-Asn、L-Gln、L-Glu 和 L-Ala 的 N 标记的转化,导致 NMR 信号模糊以及标记稀释。特定的抑制剂鸡尾酒可以抑制大多数不需要的转化反应,但需要考虑其对 CF 系统生产力的有限可用性和潜在副作用。作为解决 CF 系统中 NMR 标记转换的替代途径,我们描述了生成具有降低的氨基酸混乱活性的优化大肠杆菌裂解物的方法。我们的策略基于大肠杆菌菌株 A19 的标准化 CF S30 裂解物的蛋白质组蓝图。通过对 A19 中的相应单和累积染色体突变进行工程改造,消除了具有可疑氨基酸混乱活性的裂解物酶。对突变体制备的 CF 裂解物进行 CF 蛋白合成效率和残留混乱活性分析。包含累积突变 asnA、ansA/B、glnA、aspC 和 ilvE 的 A19 衍生物“Stablelabel”产生了最有用的 CF S30 裂解物。我们展示了在“Stablelabel”裂解物中 CF 合成的选择性标记蛋白的优化 NMR 光谱复杂性。利用“Stablelabel”中的 ilvE 缺失,我们进一步例证了一种用于质子泵蛋白原视紫质的膜蛋白甲基特异性标记的新策略。