Suppr超能文献

子宫间质肿瘤:磁共振成像(MRI)诊断算法的发展及初步结果。

Uterine mesenchymal tumors: development and preliminary results of a magnetic resonance imaging (MRI) diagnostic algorithm.

机构信息

Diagnostic Imaging Department, San Paolo Hospital-ASL 2, via Genova, 30, Savona, Italy.

Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy.

出版信息

Radiol Med. 2023 Jul;128(7):853-868. doi: 10.1007/s11547-023-01654-1. Epub 2023 Jun 14.

Abstract

PURPOSE

The aim of our study is to propose a diagnostic algorithm to guide MRI findings interpretation and malignancy risk stratification of uterine mesenchymal masses with a multiparametric step-by-step approach.

METHODS

A non-interventional retrospective multicenter study was performed: Preoperative MRI of 54 uterine masses was retrospectively evaluated. Firstly, the performance of MRI with monoparametric and multiparametric approach was assessed. Reference standard for final diagnosis was surgical pathologic result (n = 53 patients) or at least 1-year MR imaging follow-up (n = 1 patient). Subsequently, a diagnostic algorithm was developed for MR interpretation, resulting in a Likert score from 1 to 5 predicting risk of malignancy of the uterine lesion. The accuracy and reproducibility of the MRI scoring system were then tested: 26 preoperative pelvic MRI were double-blind evaluated by a senior (SR) and junior radiologist (JR). Diagnostic performances and the agreement between the two readers with and without the application of the proposed algorithm were compared, using histological results as standard reference.

RESULTS

Multiparametric approach showed the best diagnostic performance in terms of accuracy (94.44%,) and specificity (97.56%). DWI was confirmed as the most sensible parameter with a relative high specificity: low ADC values (mean 0.66) significantly correlated to uterine sarcomas diagnosis (p < 0.01). Proposed algorithm allowed to improve both JR and SR performance (algorithm-aided accuracy 88.46% and 96%, respectively) and determined a significant increase in inter-observer agreement, helping even the less-experienced radiologist in this difficult differential diagnosis.

CONCLUSIONS

Uterine leiomyomas and sarcomas often show an overlap of clinical and imaging features. The application of a diagnostic algorithm can help radiologists to standardize their approach to a complex myometrial mass and to easily identify suspicious MRI features favoring malignancy.

摘要

目的

我们研究的目的是提出一种诊断算法,通过多参数逐步方法指导子宫间质肿块的 MRI 结果解读和恶性风险分层。

方法

进行了一项非介入性回顾性多中心研究:回顾性评估了 54 个子宫肿块的术前 MRI。首先,评估了 MRI 单参数和多参数方法的性能。最终诊断的参考标准是手术病理结果(n=53 例患者)或至少 1 年的 MRI 随访结果(n=1 例患者)。随后,为 MRI 解读开发了一种诊断算法,得出预测子宫病变恶性风险的 Likert 评分 1-5 分。然后测试了 MRI 评分系统的准确性和可重复性:由一名高级(SR)和初级(JR)放射科医生对 26 份术前盆腔 MRI 进行双盲评估。使用组织学结果作为标准参考,比较了在应用和不应用所提出算法的情况下,两种读者的诊断性能和一致性。

结果

多参数方法在准确性(94.44%)和特异性(97.56%)方面表现出最佳的诊断性能。DWI 被确认为最敏感的参数,具有较高的特异性:低 ADC 值(平均值 0.66)与子宫肉瘤的诊断显著相关(p<0.01)。所提出的算法可以提高 JR 和 SR 的性能(辅助算法的准确性分别为 88.46%和 96%),并显著提高观察者间的一致性,即使是经验较少的放射科医生也可以进行这种困难的鉴别诊断。

结论

子宫平滑肌瘤和肉瘤通常表现出重叠的临床和影像学特征。诊断算法的应用可以帮助放射科医生标准化他们对复杂的子宫肌层肿块的处理方法,并轻松识别提示恶性肿瘤的可疑 MRI 特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验