Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
Acad Radiol. 2019 Oct;26(10):1390-1399. doi: 10.1016/j.acra.2018.11.014. Epub 2019 Jan 17.
Uterine leiomyomas with high signal intensity on T2-weighted imaging (T2WI) can be difficult to distinguish from sarcomas. This study assessed the feasibility of using machine learning to differentiate uterine sarcomas from leiomyomas with high signal intensity on T2WI on multiparametric magnetic resonance imaging.
This retrospective study included 80 patients (50 with benign leiomyoma and 30 with uterine sarcoma) who underwent pelvic 3 T magnetic resonance imaging examination for the evaluation of uterine myometrial smooth muscle masses with high signal intensity on T2WI. We used six machine learning techniques to develop prediction models based on 12 texture parameters on T1WI and T2WI, apparent diffusion coefficient maps, and contrast-enhanced T1WI, as well as tumor size and age. We calculated the areas under the curve (AUCs) using receiver-operating characteristic analysis for each model by 10-fold cross-validation and compared these to those for two board-certified radiologists.
The eXtreme Gradient Boosting model gave the highest AUC (0.93), followed by the random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and logistic regression models. Age was the most important factor for differentiation (leiomyoma 44.9 ± 11.1 years; sarcoma 58.9 ± 14.7 years; p < 0.001). The AUC for the eXtreme Gradient Boosting was significantly higher than those for both radiologists (0.93 vs 0.80 and 0.68, p = 0.03 and p < 0.001, respectively).
Machine learning outperformed experienced radiologists in the differentiation of uterine sarcomas from leiomyomas with high signal intensity on T2WI.
在 T2 加权成像(T2WI)上具有高信号强度的子宫肌瘤与肉瘤难以区分。本研究旨在评估机器学习在多参数磁共振成像上区分 T2WI 上具有高信号强度的子宫肉瘤和肌瘤的可行性。
本回顾性研究纳入了 80 名患者(50 名良性子宫肌瘤和 30 名子宫肉瘤),这些患者因 T2WI 上具有高信号强度的子宫平滑肌肿块而行盆腔 3T 磁共振成像检查。我们使用 6 种机器学习技术,基于 T1WI 和 T2WI 上的 12 个纹理参数、表观扩散系数图、对比增强 T1WI 以及肿瘤大小和年龄,建立预测模型。我们通过 10 折交叉验证计算每个模型的曲线下面积(AUC),并与两名具有认证资质的放射科医生进行比较。
极端梯度提升模型(eXtreme Gradient Boosting model)的 AUC 最高(0.93),其次是随机森林(random forest)、支持向量机(support vector machine)、多层感知机(multilayer perceptron)、k-最近邻(k-nearest neighbors)和逻辑回归(logistic regression)模型。年龄是区分两者的最重要因素(子宫肌瘤 44.9±11.1 岁;肉瘤 58.9±14.7 岁;p<0.001)。eXtreme Gradient Boosting 模型的 AUC 明显高于两名放射科医生(0.93 与 0.80 和 0.68,p=0.03 和 p<0.001)。
在 T2WI 上具有高信号强度的子宫肌瘤与肉瘤的区分中,机器学习优于有经验的放射科医生。