Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States.
Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States.
J Neurophysiol. 2023 Jul 1;130(1):86-103. doi: 10.1152/jn.00068.2022. Epub 2023 Jun 14.
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state. GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
异丙酚诱导的意识丧失会在患者的脑电图(EEG)中引发强烈的α/低β和慢波振荡。随着麻醉剂量的增加,脑电图信号会发生变化,这些变化为无意识水平提供了线索;这些变化的网络机制仅部分得到理解。在这里,我们构建了一个涉及脑干影响的生物物理丘脑皮质网络,该网络再现了脑电图中涉及α/低β和慢节律的功率和频率演变以及它们相互作用的动力学转变。我们的模型表明,异丙酚通过激活丘脑纺锤波和皮质睡眠机制来分别引发持续的α/低β和慢节律。在秒级的时间尺度上,丘脑皮质网络在两个相互排斥的状态之间波动。一种状态的特征是丘脑连续的α/低β频率放电(C 状态),而在另一种状态下,丘脑的α 放电被同时发生的丘脑和皮质沉默期(I 状态)打断。在 I 状态下,α 与慢波的峰值重合;在 C 状态下,α/β 节律与慢波之间存在可变关系。C 状态在意识丧失附近占主导地位;随着剂量的增加,处于 I 状态的时间比例增加,再现了脑电图现象学。皮质同步性通过改变丘脑皮质反馈的性质来驱动向 I 状态的转变。脑干对丘脑皮质反馈强度的影响介导了皮质同步性的程度。我们的模型表明,低频β的丧失、皮质同步性和协调的丘脑皮质沉默期是导致无意识状态的原因。GABA 能麻醉剂在脑电图中诱导α/低β和慢波振荡,这些振荡以剂量依赖的方式相互作用。我们构建了一个丘脑皮质模型来研究这些相互依赖的振荡如何随异丙酚剂量变化而变化。我们发现了两种丘脑皮质协调的动态状态,它们在秒级的时间尺度上变化,并且剂量依赖性地反映了脑电图中的已知变化。丘脑皮质反馈决定了每个状态中的振荡耦合和功率,这主要由皮质同步性和脑干神经调制驱动。