Wang Qian, Liu Anmin, Qiao Shaoming, Zhang Qiang, Huang Chunhong, Lei Da, Shi Xiaoshan, He Gaohong, Zhang Fengxiang
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China.
School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China.
ChemSusChem. 2023 Oct 6;16(19):e202300507. doi: 10.1002/cssc.202300507. Epub 2023 Aug 2.
Due to the "shuttle effect" and low conversion kinetics of polysulfides, the cycle stability of lithium sulfur (Li-S) battery is unsatisfactory, which hinders its practical application. The Mott-Schottky heterostructures for Li-S batteries not only provide more catalytic/adsorption active sites, but also facilitate electrons transport by a built-in electric field, which are both beneficial for polysulfides conversion and long-term cycle stability. Here, MXene@WS heterostructure was constructed by in-situ hydrothermal growth for separator modification. In-depth ultraviolet photoelectron spectroscopy and ultraviolet visible diffuse reflectance spectroscopy analysis reveals that there is an energy band difference between MXene and WS , confirming the heterostructure nature of MXene@WS . DFT calculations indicate that the Mott-Schottky MXene@WS heterostructure can effectively promote electron transfer, improve the multi-step cathodic reaction kinetics, and further enhance polysulfides conversion. The built-in electric field of the heterostructure plays an important role in reducing the energy barrier of polysulfides conversion. Thermodynamic studies reveal the best stability of MXene@WS during polysulfides adsorption. As a result, the Li-S battery with MXene@WS modified separator exhibits high specific capacity (1613.7 mAh g at 0.1 C) and excellent cycling stability (2000 cycles with 0.0286 % decay per cycle at 2 C). Even at a high sulfur loading of 6.3 mg cm , the specific capacity could be retained by 60.0 % after 240 cycles at 0.3 C. This work provides deep structural and thermodynamic insights into MXene@WS heterostructure and its promising prospect of application in high performance Li-S batteries.
由于多硫化物的“穿梭效应”和低转化动力学,锂硫(Li-S)电池的循环稳定性不尽人意,这阻碍了其实际应用。用于Li-S电池的莫特-肖特基异质结构不仅提供了更多的催化/吸附活性位点,还通过内置电场促进电子传输,这两者都有利于多硫化物的转化和长期循环稳定性。在此,通过原位水热生长构建了MXene@WS异质结构用于隔膜改性。深入的紫外光电子能谱和紫外可见漫反射光谱分析表明,MXene和WS之间存在能带差异,证实了MXene@WS的异质结构性质。密度泛函理论计算表明,莫特-肖特基MXene@WS异质结构可以有效促进电子转移,改善多步阴极反应动力学,并进一步提高多硫化物的转化率。异质结构的内置电场在降低多硫化物转化的能垒方面起着重要作用。热力学研究揭示了MXene@WS在多硫化物吸附过程中的最佳稳定性。结果,具有MXene@WS改性隔膜的Li-S电池表现出高比容量(在0.1 C时为1613.7 mAh g)和优异的循环稳定性(在2 C时循环2000次,每次循环衰减0.0286%)。即使在6.3 mg cm的高硫负载下,在0.3 C下循环240次后比容量仍可保留60.0%。这项工作为MXene@WS异质结构提供了深入的结构和热力学见解及其在高性能Li-S电池中的应用前景。