Deng Shungui, Sun Weiwei, Tang Jiawei, Jafarpour Mohammad, Nüesch Frank, Heier Jakob, Zhang Chuanfang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600, Dübendorf, Switzerland.
Nanomicro Lett. 2024 Jun 28;16(1):229. doi: 10.1007/s40820-024-01446-w.
Poor cycling stability in lithium-sulfur (Li-S) batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures. Heterogeneous catalysis has emerged as a promising approach, leveraging the adsorption and catalytic performance on lithium polysulfides (LiPSs) to inhibit LiPSs shuttling and improve redox kinetics. In this study, we report an ultrathin and laminar SnO@MXene heterostructure interlayer (SnO@MX), where SnO quantum dots (QDs) are uniformly distributed across the MXene layer. The combined structure of SnO QDs and MXene, along with the creation of numerous active boundary sites with coordination electron environments, plays a critical role in manipulating the catalytic kinetics of sulfur species. The Li-S cell with the SnO@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling. As a result, an areal capacity of 7.6 mAh cm under a sulfur loading of 7.5 mg cm and a high stability over 500 cycles are achieved. Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li-S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.
锂硫(Li-S)电池中较差的循环稳定性需要先进的电极/电解质设计和创新的夹层结构。多相催化已成为一种很有前景的方法,利用其对多硫化锂(LiPSs)的吸附和催化性能来抑制LiPSs穿梭并改善氧化还原动力学。在本研究中,我们报道了一种超薄层状的SnO@MXene异质结构夹层(SnO@MX),其中SnO量子点(QDs)均匀分布在MXene层上。SnO量子点和MXene的组合结构,以及具有配位电子环境的大量活性边界位点的产生,在操纵硫物种的催化动力学方面起着关键作用。具有SnO@MX修饰隔膜的Li-S电池不仅与使用裸隔膜的电池相比表现出优异的电化学性能,而且在循环过程中诱导均匀的锂沉积。结果,在硫负载为7.5 mg cm²的情况下实现了7.6 mAh cm²的面积容量以及超过500次循环的高稳定性。我们的工作展示了一种利用层状隔膜夹层用于先进的等待商业化的Li-S电池的可行策略,并可能有助于理解具有增强反应动力学的异质结构催化。