IFT74 变异导致小鼠和人类的骨骼纤毛病和运动纤毛缺陷。
IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans.
机构信息
Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.
Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands.
出版信息
PLoS Genet. 2023 Jun 14;19(6):e1010796. doi: 10.1371/journal.pgen.1010796. eCollection 2023 Jun.
Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.
纤毛的运动和非运动功能在哺乳动物的发育和健康中起着至关重要的作用。这些细胞器由 1000 多种或更多独特的蛋白质组成,但它们的组装完全依赖于细胞体中合成的蛋白质,并通过鞭毛内运输(IFT)运输到纤毛中。在哺乳动物中,IFT 功能障碍导致的非运动纤毛功能障碍会导致影响大多数器官的复杂发育表型。相比之下,运动纤毛功能的破坏会导致生育能力下降、左右身体轴的破坏以及反复的呼吸道感染和进行性肺损伤。在这项工作中,我们描述了人类和小鼠中 IFT74 功能障碍导致的等位基因特异性表型。我们鉴定了两个携带包含 IFT74 外显子 2 的缺失的家族,第一个编码外显子,导致缺失前 40 个氨基酸的蛋白质和两个携带双等位基因剪接位点突变的个体。纯合外显子 2 缺失病例表现为纤毛软骨发育不良,胸廓狭窄,生长迟缓,同时伴有粘液纤毛清除障碍表型,纤毛明显缩短。剪接位点变异导致致命的骨骼软骨发育不良表型。在小鼠中,去除前 40 个氨基酸同样会导致运动纤毛表型,但对初级纤毛结构几乎没有影响。携带该等位基因的小鼠能够存活,但生长受限,并在生命的第一个月出现脑积水。相比之下,在小鼠中,IFT74 的一个强、可能为无效的等位基因完全阻止了纤毛的组装,导致严重的心脏缺陷和中期妊娠致死。体外研究表明,IFT74 的前 40 个氨基酸对于与其他 IFT 亚基的结合是可有可无的,但对于微管蛋白的结合是重要的。与初级纤毛相比,运动纤毛中对微管蛋白运输的更高需求可能是由增加的机械应力和修复需求引起的,这可以解释在人类和小鼠中观察到的运动纤毛表型。