文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

接种后鸡盲肠全转录组N6-甲基腺苷修饰分析

Transcriptome-wide N6-methyladenosinem modifications analysis of chicken cecum in responding to inoculation.

作者信息

Zhao Yanan, Wang Yuanmei, Liu Liying, Ren Yanru, Liu Long, Wang Jiayi, Li Xianyao

机构信息

Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China.

College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.

出版信息

Front Immunol. 2025 Jul 30;16:1630008. doi: 10.3389/fimmu.2025.1630008. eCollection 2025.


DOI:10.3389/fimmu.2025.1630008
PMID:40808945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12343223/
Abstract

INTRODUCTION: , a commensal food-borne pathogen, poses severe threat to human health and poultry industry. N6-methyladenosine (mA) mRNA modification is associated with innate immunity. However, the mechanism of mA modification in chicken cecum inoculation remains unclear. METHODS: Here, we characterized the cecal mA modification landscape of chicken in the -resistant (R) and susceptible (S) groups using methylated RNA immunoprecipitation sequencing and RNA sequencing (RNA-seq), and further conducted the in vitro inflammatory model based on chicken macrophage-like cell line (HD11) to elucidate the specific mechanism. RESULTS: In the S group, the level of proinflammatory cytokines (IL-8, IL-1β, IL-18, TNF-α, IL-17A) and global RNA methylation were significantly decreased ( < 0.05). A total of 30,427 and 30,367 mA peaks were identified in R and S groups, which were primarily located in 3'UTR and CDS regions. Among these, 514 differential mA peaks (270 hypermethylated peaks and 244 hypomethylated peaks) were identified, which mainly correlated with the regulation of canonical NF-kappaB signal transduction, apoptotic signaling pathway, and MyD88-dependent toll-like receptor signaling pathway. Moreover, we identified 365 differentially expressed genes (DEGs), which were mainly associated with regulation of autophagy, and toll-like receptor 9 signaling pathway, intraciliary transport involved in cilium assembly, positive regulation of mTOR signaling, defense response to bacteria. The correlation analysis revealed that mA methylation level correlated positively with gene expression. Further analysis identified 58 differentially methylated genes (DMGs), and mainly involved in apoptosis, autophagy, Notch signaling pathway and defense response to bacteria, which mainly enriched by DMGs including and . Furthermore, we found that YTHDC2 could involve in regulating the apoptosis and autophagy process of HD11 cells through altering the expression of DMGs including and , which was confirmed by experiments in vitro. CONCLUSION: This result suggested the regulatory role of mA methylation in chicken responds to inoculation. Collectively, the current study characterized the mA modification landscape of chicken cecum and identified YTHDC2 acting key regulator responsible for inoculation.

摘要

引言:作为一种食源性共生病原菌,对人类健康和家禽业构成严重威胁。N6-甲基腺苷(m⁶A)mRNA修饰与先天免疫相关。然而,鸡盲肠接种中m⁶A修饰的机制仍不清楚。 方法:在此,我们使用甲基化RNA免疫沉淀测序和RNA测序(RNA-seq)对鸡抗沙门氏菌(R)组和易感(S)组的盲肠m⁶A修饰图谱进行了表征,并基于鸡巨噬细胞样细胞系(HD11)建立了体外炎症模型以阐明具体机制。 结果:在S组中,促炎细胞因子(IL-8、IL-1β、IL-18、TNF-α、IL-17A)水平和整体RNA甲基化水平显著降低(P<0.05)。在R组和S组中分别鉴定出30427个和30367个m⁶A峰,主要位于3'UTR和CDS区域。其中,鉴定出514个差异m⁶A峰(270个高甲基化峰和244个低甲基化峰),主要与经典NF-κB信号转导、凋亡信号通路和MyD88依赖性Toll样受体信号通路的调控相关。此外,我们鉴定出365个差异表达基因(DEGs),主要与自噬调控、Toll样受体9信号通路、参与纤毛组装的纤毛内运输、mTOR信号的正调控、对细菌的防御反应相关。相关性分析表明m⁶A甲基化水平与基因表达呈正相关。进一步分析鉴定出58个差异甲基化基因(DMGs),主要涉及凋亡、自噬、Notch信号通路和对细菌的防御反应,主要由包括[具体基因1]和[具体基因2]在内的DMGs富集。此外,我们发现YTHDC2可通过改变包括[具体基因1]和[具体基因2]在内的DMGs的表达参与调节HD11细胞的凋亡和自噬过程,这在体外实验中得到了证实。 结论:该结果表明m⁶A甲基化在鸡对沙门氏菌接种反应中的调节作用。总体而言,当前研究表征了鸡盲肠的m⁶A修饰图谱,并鉴定出YTHDC2是负责沙门氏菌接种的关键调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/50c4113b12e8/fimmu-16-1630008-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/3b503e3aaa55/fimmu-16-1630008-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/6900148ea8d8/fimmu-16-1630008-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/1d67abdcc793/fimmu-16-1630008-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/6c876ab00536/fimmu-16-1630008-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/56c45bd7f710/fimmu-16-1630008-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/1c327e9823b3/fimmu-16-1630008-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/50c4113b12e8/fimmu-16-1630008-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/3b503e3aaa55/fimmu-16-1630008-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/6900148ea8d8/fimmu-16-1630008-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/1d67abdcc793/fimmu-16-1630008-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/6c876ab00536/fimmu-16-1630008-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/56c45bd7f710/fimmu-16-1630008-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/1c327e9823b3/fimmu-16-1630008-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/12343223/50c4113b12e8/fimmu-16-1630008-g007.jpg

相似文献

[1]
Transcriptome-wide N6-methyladenosinem modifications analysis of chicken cecum in responding to inoculation.

Front Immunol. 2025-7-30

[2]
Exposure of broiler chickens to deoxynivalenol and Campylobacter jejuni induces substantial changes in intestinal gene expression.

Sci Rep. 2025-4-19

[3]
Direct RNA sequencing reveals chicken post-transcriptional modifications in response to Campylobacter jejuni inoculation.

BMC Genomics. 2025-4-14

[4]
Comprehensive Analysis of Differences in N6-Methyladenosine RNA Methylation Groups in CVB3-Induced Viral Myocarditis and Identification of the Anti-Apoptotic Role of RBM15B.

J Inflamm Res. 2025-6-17

[5]
Role of N6-methyladenosine methylation in transverse aortic constriction-induced cardiac fibrosis: insights from MeRIP-seq analysis.

Mol Biol Rep. 2025-8-26

[6]
Molecular detection of antibiotic-resistant Campylobacter spp. among broiler and layer chickens in Egypt: An outlook from a One Health concept.

Res Vet Sci. 2025-9

[7]
N6-methyladenosine RNA landscape in the aged mouse hearts.

Front Cardiovasc Med. 2025-6-18

[8]
Immune responses and recovery from spotty liver disease in layer birds.

Poult Sci. 2025-5-26

[9]
IGF2BP2 binding to CPSF6 facilitates m6A-mediated alternative polyadenylation of PUM2 and promotes malignant progression in ovarian cancer.

Clin Transl Med. 2025-7

[10]
N6-methyladenosine modification of THBS1 induced by affluent WTAP promotes Graves' ophthalmopathy progression through glycolysis to affect Th17/Treg balance.

Autoimmunity. 2025-12

本文引用的文献

[1]
Direct RNA sequencing reveals chicken post-transcriptional modifications in response to Campylobacter jejuni inoculation.

BMC Genomics. 2025-4-14

[2]
Small RNA CjNC110 regulates the activated methyl cycle to enable optimal chicken colonization by .

mSphere. 2025-1-28

[3]
RNA mA-mediated post-transcriptional repression of glucocorticoid receptor in LPS-activated Kupffer cells on broilers.

Poult Sci. 2025-1

[4]
Lactylation of RNA mA demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus.

Proc Natl Acad Sci U S A. 2024-10-22

[5]
Capn3b-deficient zebrafish model reveals a key role of autoimmune response in LGMDR1.

J Genet Genomics. 2024-12

[6]
Resveratrol Enhances Antioxidant and Anti-Apoptotic Capacities in Chicken Primordial Germ Cells through m6A Methylation: A Preliminary Investigation.

Animals (Basel). 2024-7-30

[7]
MeRIP sequencing reveals the regulation of N6-methyladenosine in muscle development between hypertrophic and leaner broilers.

Poult Sci. 2024-6

[8]
Metabolomic signatures of intestinal colonization resistance against in mice.

Front Microbiol. 2023-12-18

[9]
Autophagy activation is required for N6-methyladenosine modification to regulate ferroptosis in hepatocellular carcinoma.

Redox Biol. 2024-2

[10]
Functional analysis of circSTX8 in chicken macrophages under lipopolysaccharide stimulation.

Res Vet Sci. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索