School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China.
Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
J Colloid Interface Sci. 2023 Oct 15;648:778-786. doi: 10.1016/j.jcis.2023.05.189. Epub 2023 Jun 2.
The mutual transformation of reactive oxygen species may affect the structural transformation of catalysts during the Fenton-like processes. Its in-depth understanding is essential to achieve high catalytic activity and stability. In this study, a novel design of Cu(I) active sites based on the metal-organic framework (MOF) is proposed to "capture" OH produced via Fenton-like processes and re-coordinate the oxidized Cu sites. The Cu(I)-MOF presents an excellent removal efficiency for sulfamethoxazole (SMX), with a high removal kinetic constant of 7.146 min. Combing DFT calculations with experimental observations, we have revealed that the Cu of Cu(I)-MOF exhibits a lower d-band center, enabling efficient activation of HO and spontaneous "capturing" of OH to form Cu-MOF, which can be reorganized into the Cu(I)-MOF through molecular regulation for recycle. This research demonstrates a promising Fenton-like approach for solving the trade-off between catalytic activity and stability and provides new insights into the design and synthesis of efficient MOF-based catalysts for water treatment.
活性氧物种的相互转化可能会影响芬顿类过程中催化剂的结构转化。深入了解这一点对于实现高催化活性和稳定性至关重要。在这项研究中,提出了一种基于金属有机骨架(MOF)的新型 Cu(I)活性位点设计,以“捕获”芬顿类过程中产生的 OH 并重新配位氧化的 Cu 位。Cu(I)-MOF 对磺胺甲恶唑(SMX)具有优异的去除效率,去除动力学常数高达 7.146 min。通过 DFT 计算与实验观察相结合,我们揭示了 Cu(I)-MOF 中的 Cu 具有较低的 d 带中心,能够高效地激活 HO 并自发地“捕获”OH 形成 Cu-MOF,通过分子调控可以将其重新组装成 Cu(I)-MOF 进行循环利用。这项研究为解决催化活性和稳定性之间的权衡问题提供了一种有前途的芬顿类方法,并为设计和合成用于水处理的高效 MOF 基催化剂提供了新的思路。