Suppr超能文献

基于神经影像学的儿童肌张力障碍脑深部电刺激治疗结局分析:来自 GEPESTIM 登记研究的启示。

Neuroimaging-based analysis of DBS outcomes in pediatric dystonia: Insights from the GEPESTIM registry.

机构信息

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.

Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

出版信息

Neuroimage Clin. 2023;39:103449. doi: 10.1016/j.nicl.2023.103449. Epub 2023 Jun 10.

Abstract

INTRODUCTION

Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources.

METHODS

An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort.

RESULTS

We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003).

CONCLUSIONS

Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.

摘要

简介

深部脑刺激(DBS)是一种针对各种年龄、多种药物难治性神经疾病的有效治疗方法。DBS 的手术靶点定位和术后程控取决于刺激电极相对于周围解剖结构的空间位置,以及电极与大脑网络中特定分布模式的连通性。这些信息通常通过基于群体的分析获得,该分析依赖于可用的规范成像资源(图谱和连接组)。对于患有脑瘫等使人衰弱的神经疾病的儿童来说,这种信息非常有用,尤其是考虑到成人和儿童的神经影像学数据存在发育差异。我们从开放获取的数据集收集了儿科规范神经影像学资源,以便符合儿科 DBS 人群的与年龄相关的解剖和功能差异。我们通过一组接受苍白球 DBS 治疗的脑瘫患者的队列来展示这些资源的实用性。我们旨在为患儿确定一个局部苍白球刺激点,并探索与苍白球刺激相关的连通性特征,以举例说明所收集的影像学资源的实用性。

方法

实施了一个平均的儿科脑模板(MNI 脑模板 4.5-18.5 岁),并将其用于从 GEPESTIM 注册队列的 20 名患者中定位 DBS 电极。还使用了一个类似 DBS 研究中 DISTAL 图谱的儿科皮质下图谱,以突出显示感兴趣的解剖结构。构建了一个局部苍白球刺激点模型,并计算了其与刺激体积的重叠程度,作为个体临床结果的相关性。此外,还构建了一个由 100 名来自可靠性和可重复性联合会的神经正常受试者组成的儿科功能连接组,以允许进行基于网络的分析,并确定导致我们队列临床改善的连通性特征。

结果

我们成功实施了一个儿科神经影像学数据集,该数据集将作为 DBS 分析的工具供公众使用。刺激体积与确定的 DBS 刺激点模型的重叠程度与局部空间水平的改善显著相关(R=0.46,置换 p=0.019)。确定 DBS 结果的功能连通性特征是脑瘫患儿治疗性苍白球刺激的网络相关性(R=0.30,置换 p=0.003)。

结论

使用儿科神经影像学替代数据,局部刺激点和分布式网络模型为 DBS 相关的脑瘫临床结果提供了神经解剖学基础。实施该儿科神经影像学数据集可能有助于改善实践,并为儿科患者的个性化 DBS-神经影像学分析铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/10275720/7e7a22d8d8c0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验