Suppr超能文献

规范性图谱在脑深部电刺激中的应用:一项综述

Applying normative atlases in deep brain stimulation: a comprehensive review.

作者信息

Chang Bowen, Park Jay J, Buch Vivek P

机构信息

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, People's Republic of China.

Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA.

出版信息

Int J Surg. 2024 Dec 1;110(12):8037-8044. doi: 10.1097/JS9.0000000000002120.

Abstract

Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy. This comprehensive review explores the application of normative atlases in DBS, emphasizing their role in target identification, patient-specific electrode placement, and predicting stimulation outcomes. Challenges, such as variability across atlases and technical complexities, are addressed alongside future directions and innovations, including advancements in neuroimaging technologies and the integration of machine learning (ML) and artificial intelligence (AI). Normative atlases play a pivotal role in enhancing DBS precision and patient outcomes, promising a future of personalized and effective therapies in neurology and psychiatry.

摘要

深部脑刺激(DBS)已成为治疗各种神经和精神疾病的关键治疗策略。精确的靶点定位对于优化治疗效果至关重要,这需要先进的神经成像技术。标准化图谱为准确放置电极提供了标准化参考,有助于增强治疗的个性化定制和疗效。这篇综述全面探讨了标准化图谱在DBS中的应用,强调了它们在靶点识别、个体化电极放置以及预测刺激结果方面的作用。文中还讨论了图谱间差异和技术复杂性等挑战,以及未来的发展方向和创新,包括神经成像技术的进步以及机器学习(ML)和人工智能(AI)的整合。标准化图谱在提高DBS的精确性和患者治疗效果方面发挥着关键作用,有望为神经学和精神病学带来个性化且有效的治疗未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d435/11634178/a92c393b3012/js9-110-8037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验