Suppr超能文献

细胞特异性 Dyt1 ∆GAG knock-in 至基底神经节和小脑揭示了对运动行为和感觉运动网络功能的差异影响。

Cell-specific Dyt1 ∆GAG knock-in to basal ganglia and cerebellum reveal differential effects on motor behavior and sensorimotor network function.

机构信息

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.

出版信息

Exp Neurol. 2023 Sep;367:114471. doi: 10.1016/j.expneurol.2023.114471. Epub 2023 Jun 14.

Abstract

Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure. In order to achieve this goal, we generated two genetically modified mouse models: in model 1 we performed Dyt1 ∆GAG conditional knock-in (KI) in neurons that express dopamine-2 receptors (D2-KI), and in model 2 we performed Dyt1 ∆GAG conditional KI in Purkinje cells of the cerebellum (Pcp2-KI). In both of these models, we used functional magnetic resonance imaging (fMRI) to assess sensory-evoked brain activation and resting-state functional connectivity, and diffusion MRI to assess brain microstructure. We found that D2-KI mutant mice had motor deficits, abnormal sensory-evoked brain activation in the somatosensory cortex, as well as increased functional connectivity of the anterior medulla with cortex. In contrast, we found that Pcp2-KI mice had improved motor performance, reduced sensory-evoked brain activation in the striatum and midbrain, as well as reduced functional connectivity of the striatum with the anterior medulla. These findings suggest that (1) D2 cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the basal ganglia results in detrimental effects on the sensorimotor network and motor output, and (2) Purkinje cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the cerebellum results in compensatory changes in the sensorimotor network that protect against dystonia-like motor deficits.

摘要

肌张力障碍是一种以重复、无意识运动和由持续或间歇性肌肉收缩引起的致残姿势为特征的神经运动障碍。基底神经节和小脑在研究 DYT1 肌张力障碍方面受到了广泛关注。目前尚不清楚基底神经节或小脑特定细胞内 torsinA 的细胞特异性 ∆GAG 突变如何影响运动表现、躯体感觉网络连通性和微结构。为了实现这一目标,我们生成了两种基因修饰的小鼠模型:在模型 1 中,我们在表达多巴胺-2 受体(D2-KI)的神经元中进行 Dyt1 ∆GAG 条件敲入(KI),在模型 2 中,我们在小脑浦肯野细胞(Pcp2-KI)中进行 Dyt1 ∆GAG 条件 KI。在这两种模型中,我们都使用功能磁共振成像(fMRI)来评估感觉诱发的大脑激活和静息状态功能连通性,并使用扩散磁共振成像(dMRI)来评估大脑微结构。我们发现 D2-KI 突变小鼠存在运动缺陷、躯体感觉皮层感觉诱发大脑激活异常以及前髓质与皮层的功能连通性增加。相比之下,我们发现 Pcp2-KI 小鼠的运动性能得到改善、纹状体和中脑感觉诱发大脑激活减少以及纹状体与前髓质的功能连通性降低。这些发现表明:(1)基底节中 D2 细胞特异性 Dyt1 ∆GAG 介导的 torsinA 功能障碍导致感觉运动网络和运动输出受损;(2)小脑浦肯野细胞特异性 Dyt1 ∆GAG 介导的 torsinA 功能障碍导致感觉运动网络的代偿性变化,从而防止类似肌张力障碍的运动缺陷。

相似文献

2
Cell-specific effects of Dyt1 knock-out on sensory processing, network-level connectivity, and motor deficits.
Exp Neurol. 2021 Sep;343:113783. doi: 10.1016/j.expneurol.2021.113783. Epub 2021 Jun 10.
3
In vivo imaging reveals impaired connectivity across cortical and subcortical networks in a mouse model of DYT1 dystonia.
Neurobiol Dis. 2016 Nov;95:35-45. doi: 10.1016/j.nbd.2016.07.005. Epub 2016 Jul 9.
5
A role for cerebellum in the hereditary dystonia DYT1.
Elife. 2017 Feb 15;6:e22775. doi: 10.7554/eLife.22775.
8
Sensorimotor tests unmask a phenotype in the DYT1 knock-in mouse model of dystonia.
Behav Brain Res. 2017 Jan 15;317:536-541. doi: 10.1016/j.bbr.2016.10.028. Epub 2016 Oct 18.
9
Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia.
Neurobiol Dis. 2014 Feb;62:372-80. doi: 10.1016/j.nbd.2013.10.003. Epub 2013 Oct 11.
10
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
Brain Res Bull. 2020 Dec;165:14-22. doi: 10.1016/j.brainresbull.2020.09.011. Epub 2020 Sep 22.

引用本文的文献

1
Altered Functional Brain Connectivity in Dyt1 Knock-in mouse models.
Dystonia. 2025;4. doi: 10.3389/dyst.2025.13874. Epub 2025 Feb 12.
2
Subtle changes in Purkinje cell firing in Purkinje cell-specific knock-in mice.
Dystonia. 2025;4. doi: 10.3389/dyst.2025.14148. Epub 2025 Jan 29.
3
4
DYT- dystonia: an update on pathogenesis and treatment.
Front Neurosci. 2023 Aug 10;17:1216929. doi: 10.3389/fnins.2023.1216929. eCollection 2023.

本文引用的文献

1
Electrophysiological characterization of the striatal cholinergic interneurons in knock-in mice.
Dystonia. 2022 Jul;1. doi: 10.3389/dyst.2022.10557. Epub 2022 Jul 21.
2
Structural magnetic resonance imaging in dystonia: A systematic review of methodological approaches and findings.
Eur J Neurol. 2022 Nov;29(11):3418-3448. doi: 10.1111/ene.15483. Epub 2022 Jul 22.
3
Exploitation of Thermal Sensitivity and Hyperalgesia in a Mouse Model of Dystonia.
Life (Basel). 2021 Sep 19;11(9):985. doi: 10.3390/life11090985.
4
Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain.
Cell Rep. 2021 Sep 21;36(12):109721. doi: 10.1016/j.celrep.2021.109721.
5
Cell-specific effects of Dyt1 knock-out on sensory processing, network-level connectivity, and motor deficits.
Exp Neurol. 2021 Sep;343:113783. doi: 10.1016/j.expneurol.2021.113783. Epub 2021 Jun 10.
7
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
Brain Res Bull. 2020 Dec;165:14-22. doi: 10.1016/j.brainresbull.2020.09.011. Epub 2020 Sep 22.
8
α-Synuclein Induces Progressive Changes in Brain Microstructure and Sensory-Evoked Brain Function That Precedes Locomotor Decline.
J Neurosci. 2020 Aug 19;40(34):6649-6659. doi: 10.1523/JNEUROSCI.0189-20.2020. Epub 2020 Jul 15.
9
The Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome.
Neuroscience. 2020 Aug 1;440:85-96. doi: 10.1016/j.neuroscience.2020.05.021. Epub 2020 May 22.
10
Sex differences in movement disorders.
Nat Rev Neurol. 2020 Feb;16(2):84-96. doi: 10.1038/s41582-019-0294-x. Epub 2020 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验