Suppr超能文献

浦肯野细胞特异性敲入小鼠中浦肯野细胞放电的细微变化。

Subtle changes in Purkinje cell firing in Purkinje cell-specific knock-in mice.

作者信息

Xing Hong, Girdhar Pallavi, Liu Yuning, Yokoi Fumiaki, Vaillancourt David E, Li Yuqing

机构信息

Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.

出版信息

Dystonia. 2025;4. doi: 10.3389/dyst.2025.14148. Epub 2025 Jan 29.

Abstract

DYT1 dystonia is an inherited early-onset generalized dystonia characterized by sustained muscle contractions causing abnormal, repetitive movements or postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion () in , coding for torsinA. heterozygous ΔGAG knock-in (KI) mice or global KI mice show motor deficits and abnormal Purkinje cell firing. However, Purkinje cell-specific heterozygous ΔGAG conditional KI mice (Pcp2-KI) show improved motor performance, reduced sensory-evoked brain activation in the striatum and midbrain, and reduced functional connectivity of the striatum with the anterior medulla. Whether Pcp2-KI mice show similar abnormal Purkinje cell firing as the global KI mice, suggesting a cell-autonomous effect causes the abnormal Purkinje cell firing in the global KI mice, is unknown. We used acute cerebellar slice recording in Pcp2-KI mice to address this issue. The Pcp2-KI mice exhibited no changes in spontaneous firing and intrinsic excitability compared to the control mice. While membrane properties were largely unchanged, the resting membrane potential was slightly hyperpolarized, which was associated with decreased baseline excitability. Our results suggest that the abnormal Purkinje cell firing in the global KI mice was not cell-autonomous and was caused by physiological changes elsewhere in the brain circuits. Our results also contribute to the ongoing research of how basal ganglia and cerebellum interact to influence motor control in normal states and movement disorders.

摘要

DYT1肌张力障碍是一种遗传性早发性全身性肌张力障碍,其特征为持续的肌肉收缩,导致异常的重复性运动或姿势。大多数DYT1患者在编码torsinA的基因中有一个杂合的三核苷酸GAG缺失()。杂合的ΔGAG敲入(KI)小鼠或全身性KI小鼠表现出运动缺陷和浦肯野细胞放电异常。然而,浦肯野细胞特异性杂合ΔGAG条件性KI小鼠(Pcp2-KI)表现出运动性能改善、纹状体和中脑感觉诱发脑激活减少,以及纹状体与延髓前部的功能连接减少。Pcp2-KI小鼠是否表现出与全身性KI小鼠类似的异常浦肯野细胞放电,提示细胞自主效应导致全身性KI小鼠浦肯野细胞放电异常,目前尚不清楚。我们使用Pcp2-KI小鼠的急性小脑切片记录来解决这个问题。与对照小鼠相比,Pcp2-KI小鼠的自发放电和内在兴奋性没有变化。虽然膜特性基本未变,但静息膜电位略有超极化,这与基线兴奋性降低有关。我们的结果表明,全身性KI小鼠中异常的浦肯野细胞放电不是细胞自主的,而是由脑回路其他部位的生理变化引起的。我们的结果也有助于正在进行的关于基底神经节和小脑如何相互作用以影响正常状态和运动障碍中的运动控制的研究。

相似文献

1
Subtle changes in Purkinje cell firing in Purkinje cell-specific knock-in mice.
Dystonia. 2025;4. doi: 10.3389/dyst.2025.14148. Epub 2025 Jan 29.
2
3
Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.
Behav Brain Res. 2012 May 1;230(2):389-98. doi: 10.1016/j.bbr.2012.02.029. Epub 2012 Feb 25.
5
Electrophysiological characterization of the striatal cholinergic interneurons in knock-in mice.
Dystonia. 2022 Jul;1. doi: 10.3389/dyst.2022.10557. Epub 2022 Jul 21.
6
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
Brain Res Bull. 2020 Dec;165:14-22. doi: 10.1016/j.brainresbull.2020.09.011. Epub 2020 Sep 22.
8
Pre-synaptic release deficits in a DYT1 dystonia mouse model.
PLoS One. 2013 Aug 13;8(8):e72491. doi: 10.1371/journal.pone.0072491. eCollection 2013.

引用本文的文献

1

本文引用的文献

1
The cerebellum directly modulates the substantia nigra dopaminergic activity.
Nat Neurosci. 2024 Mar;27(3):497-513. doi: 10.1038/s41593-023-01560-9. Epub 2024 Jan 25.
2
Physiology of Dystonia: Animal Studies.
Int Rev Neurobiol. 2023;169:163-215. doi: 10.1016/bs.irn.2023.05.004. Epub 2023 May 17.
3
Synaptic Dysfunction in Dystonia: Update From Experimental Models.
Curr Neuropharmacol. 2023;21(11):2310-2322. doi: 10.2174/1570159X21666230718100156.
5
Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice.
Behav Brain Res. 2023 Feb 15;439:114221. doi: 10.1016/j.bbr.2022.114221. Epub 2022 Nov 20.
6
Cerebellar Contributions to the Basal Ganglia Influence Motor Coordination, Reward Processing, and Movement Vigor.
J Neurosci. 2022 Nov 9;42(45):8406-8415. doi: 10.1523/JNEUROSCI.1535-22.2022.
7
Further Studies on the Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome.
Neuroscience. 2022 Nov 21;505:78-90. doi: 10.1016/j.neuroscience.2022.10.008. Epub 2022 Oct 14.
8
Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice.
Mol Cell Neurosci. 2022 Jul;121:103756. doi: 10.1016/j.mcn.2022.103756. Epub 2022 Jul 16.
9
Dystonia and Cerebellum: From Bench to Bedside.
Life (Basel). 2021 Jul 31;11(8):776. doi: 10.3390/life11080776.
10
Cell-specific effects of Dyt1 knock-out on sensory processing, network-level connectivity, and motor deficits.
Exp Neurol. 2021 Sep;343:113783. doi: 10.1016/j.expneurol.2021.113783. Epub 2021 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验