Suppr超能文献

基于感觉运动节律的脑-机接口的高密度头皮脑电图数据集。

High-density scalp electroencephalogram dataset during sensorimotor rhythm-based brain-computer interfacing.

机构信息

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan.

Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan.

出版信息

Sci Data. 2023 Jun 15;10(1):385. doi: 10.1038/s41597-023-02260-6.

Abstract

Real-time functional imaging of human neural activity and its closed-loop feedback enable voluntary control of targeted brain regions. In particular, a brain-computer interface (BCI), a direct bridge of neural activities and machine actuation is one promising clinical application of neurofeedback. Although a variety of studies reported successful self-regulation of motor cortical activities probed by scalp electroencephalogram (EEG), it remains unclear how neurophysiological, experimental conditions or BCI designs influence variability in BCI learning. Here, we provide the EEG data during using BCIs based on sensorimotor rhythm (SMR), consisting of 4 separate datasets. All EEG data were acquired with a high-density scalp EEG setup containing 128 channels covering the whole head. All participants were instructed to perform motor imagery of right-hand movement as the strategy to control BCIs based on the task-related power attenuation of SMR magnitude, that is event-related desynchronization. This dataset would allow researchers to explore the potential source of variability in BCI learning efficiency and facilitate follow-up studies to test the explicit hypotheses explored by the dataset.

摘要

实时记录人类神经活动并进行闭环反馈,有助于对目标大脑区域进行自主控制。特别是,脑机接口(BCI)作为神经活动与机器执行之间的直接桥梁,是神经反馈的一个很有前途的临床应用。虽然有许多研究报告了通过头皮脑电图(EEG)探测到的运动皮层活动的成功自我调节,但尚不清楚神经生理学、实验条件或 BCI 设计如何影响 BCI 学习中的变异性。在这里,我们提供了基于运动想象(SMR)的 BCI 使用过程中的 EEG 数据,包含 4 个独立的数据集。所有 EEG 数据都是使用包含 128 个通道的高密度头皮 EEG 设备采集的,覆盖整个头部。所有参与者都被要求执行右手运动想象,作为基于 SMR 幅度相关功率衰减的 BCI 控制策略,即事件相关去同步化。该数据集将允许研究人员探索 BCI 学习效率中变异性的潜在来源,并促进后续研究来测试数据集探索的明确假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ed/10272177/94e6a17e0e74/41597_2023_2260_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验