Carnegie Mellon University, Pittsburgh, PA, USA.
University of Minnesota, Minneapolis, MN, USA.
Sci Data. 2021 Apr 1;8(1):98. doi: 10.1038/s41597-021-00883-1.
Brain computer interfaces (BCIs) are valuable tools that expand the nature of communication through bypassing traditional neuromuscular pathways. The non-invasive, intuitive, and continuous nature of sensorimotor rhythm (SMR) based BCIs enables individuals to control computers, robotic arms, wheel-chairs, and even drones by decoding motor imagination from electroencephalography (EEG). Large and uniform datasets are needed to design, evaluate, and improve the BCI algorithms. In this work, we release a large and longitudinal dataset collected during a study that examined how individuals learn to control SMR-BCIs. The dataset contains over 600 hours of EEG recordings collected during online and continuous BCI control from 62 healthy adults, (mostly) right hand dominant participants, across (up to) 11 training sessions per participant. The data record consists of 598 recording sessions, and over 250,000 trials of 4 different motor-imagery-based BCI tasks. The current dataset presents one of the largest and most complex SMR-BCI datasets publicly available to date and should be useful for the development of improved algorithms for BCI control.
脑机接口(BCIs)是一种有价值的工具,通过绕过传统的神经肌肉通路,扩展了沟通的性质。基于感觉运动节律(SMR)的非侵入性、直观和连续性质的 BCI 使个体能够通过从脑电图(EEG)解码运动想象来控制计算机、机械臂、轮椅,甚至无人机。需要大型和统一的数据集来设计、评估和改进 BCI 算法。在这项工作中,我们发布了一个在一项研究中收集的大型和纵向数据集,该研究检查了个体如何学习控制 SMR-BCI。该数据集包含超过 600 小时的 EEG 记录,这些记录是在 62 名健康成年人(主要是右利手)在在线和连续 BCI 控制期间收集的,每个参与者最多进行 11 次训练。数据记录由 598 次记录会话和超过 250,000 次 4 种不同基于运动想象的 BCI 任务的试验组成。当前的数据集提供了迄今为止公开的最大和最复杂的 SMR-BCI 数据集之一,应该有助于开发用于 BCI 控制的改进算法。