Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia.
Chemosphere. 2023 Sep;336:139105. doi: 10.1016/j.chemosphere.2023.139105. Epub 2023 Jun 14.
Metal ion-based nanocomposite materials were recognized to exhibit a wide range of photocatalytic and biological applications. This study aims to synthesize zinc oxide doped reduced graphene oxide (ZnO/RGO) nanocomposite in sufficient quantities through the sol-gel method. The physical characters of the synthesized ZnO/RGO nanocomposite were determined by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. The TEM image results revealed rod-like morphology of the ZnO/RGO nanocomposite. The X-ray photoelectron spectral data revealed the formation of ZnO nanostructures representing the banding energy gap value of 1044.6 and 1021.5 eV positions. Moreover, ZnO/RGO nanocomposites displayed excellent photocatalytic degradation with a degradation efficiency of 98.6%. This research not only demonstrates the photocatalytic efficiency of zinc oxide-doped RGO nanosheets but also illustrates the antibacterial efficacy against two different bacterial pathogens including Gram-positive E. coli and Gram-negative S. aureus. Furthermore, this research highlights an eco-friendly and inexpensive preparation of nanocomposite material for a wide range of environmental applications.
金属离子基纳米复合材料被认为具有广泛的光催化和生物应用。本研究旨在通过溶胶-凝胶法合成足够数量的氧化锌掺杂还原氧化石墨烯(ZnO/RGO)纳米复合材料。通过 X 射线粉末衍射(XRD)、X 射线光电子能谱(XPS)、扫描电子显微镜(SEM)、能谱(EDS)和透射电子显微镜(TEM)技术确定合成的 ZnO/RGO 纳米复合材料的物理性质。TEM 图像结果显示 ZnO/RGO 纳米复合材料具有棒状形态。X 射线光电子能谱数据显示形成了 ZnO 纳米结构,代表能带能隙值为 1044.6 和 1021.5 eV 位置。此外,ZnO/RGO 纳米复合材料表现出优异的光催化降解性能,降解效率达到 98.6%。这项研究不仅展示了氧化锌掺杂 RGO 纳米片的光催化效率,还展示了对两种不同细菌病原体包括革兰氏阳性大肠杆菌和革兰氏阴性金黄色葡萄球菌的抗菌功效。此外,这项研究强调了一种环保且廉价的纳米复合材料的制备方法,可用于广泛的环境应用。