Suppr超能文献

基于强化学习的翼型外形优化方法。

A reinforcement learning approach to airfoil shape optimization.

机构信息

Aerospace Systems Design Laboratory (ASDL), School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.

Aerospace Systems Design Laboratory (ASDL), Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Sci Rep. 2023 Jun 16;13(1):9753. doi: 10.1038/s41598-023-36560-z.

Abstract

Shape optimization is an indispensable step in any aerodynamic design. However, the inherent complexity and non-linearity associated with fluid mechanics as well as the high-dimensional design space intrinsic to such problems make airfoil shape optimization a challenging task. Current approaches relying on gradient-based or gradient-free optimizers are data-inefficient in that they do not leverage accumulated knowledge, and are computationally expensive when integrating Computational Fluid Dynamics (CFD) simulation tools. Supervised learning approaches have addressed these limitations but are constrained by user-provided data. Reinforcement learning (RL) provides a data-driven approach bearing generative capabilities. We formulate the airfoil design as a Markov decision process (MDP) and investigate a Deep Reinforcement Learning (DRL) approach to airfoil shape optimization. A custom RL environment is developed allowing the agent to successively modify the shape of an initially provided 2D airfoil and to observe the associated changes in aerodynamic metrics such as lift-to-drag (L/D), lift coefficient (C) and drag coefficient (C). The learning abilities of the DRL agent are demonstrated through various experiments in which the agent's objective-maximizing L/D, maximizing C or minimizing C-as well as the initial airfoil shape are varied. Results show that the DRL agent is able to generate high performing airfoils within a limited number of learning iterations. The strong resemblance between the artificially produced shapes and those found in the literature highlights the rationality of the decision-making policy learned by the agent. Overall, the presented approach demonstrates the relevance of DRL to airfoil shape optimization and brings forward a successful application of DRL to a physics-based aerodynamics problem.

摘要

形状优化是任何空气动力学设计中不可或缺的一步。然而,由于流体力学固有的复杂性和非线性,以及此类问题固有的高维设计空间,使得翼型形状优化成为一项具有挑战性的任务。目前依赖于基于梯度或无梯度优化器的方法在数据效率方面存在不足,因为它们没有利用积累的知识,并且在集成计算流体动力学 (CFD) 模拟工具时计算成本很高。监督学习方法解决了这些限制,但受到用户提供的数据的限制。强化学习 (RL) 提供了一种具有生成能力的数据驱动方法。我们将翼型设计表述为马尔可夫决策过程 (MDP),并研究了一种用于翼型形状优化的深度强化学习 (DRL) 方法。开发了一个定制的 RL 环境,允许代理连续修改初始提供的 2D 翼型的形状,并观察与空气动力学度量(如升阻比 (L/D)、升力系数 (C) 和阻力系数 (C))相关的变化。通过各种实验展示了 DRL 代理的学习能力,其中代理的目标是最大化 L/D、最大化 C 或最小化 C 以及初始翼型形状。结果表明,DRL 代理能够在有限的学习迭代次数内生成高性能的翼型。人工生成的形状与文献中发现的形状之间的强烈相似性突出了代理学习的决策策略的合理性。总体而言,所提出的方法证明了 DRL 在翼型形状优化中的相关性,并提出了 DRL 在基于物理的空气动力学问题中的成功应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c35/10276028/2676cd5bc452/41598_2023_36560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验