Suppr超能文献

基于残差网络和生成对抗网络的多网络协同升阻比预测与翼型优化

Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network.

作者信息

Zhao Xiaoyu, Wu Weiguo, Chen Wei, Lin Yongshui, Ke Jiangcen

机构信息

Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, China.

Green and Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan, China.

出版信息

Front Bioeng Biotechnol. 2022 Sep 6;10:927064. doi: 10.3389/fbioe.2022.927064. eCollection 2022.

Abstract

As compared with the computational fluid dynamics(CFD), the airfoil optimization based on deep learning significantly reduces the computational cost. In the airfoil optimization based on deep learning, due to the uncertainty in the neural network, the optimization results deviate from the true value. In this work, a multi-network collaborative lift-to-drag ratio prediction model is constructed based on ResNet and penalty functions. Latin supersampling is used to select four angles of attack in the range of 2°-10° with significant uncertainty to limit the prediction error. Moreover, the random drift particle swarm optimization (RDPSO) algorithm is used to control the prediction error. The experimental results show that multi-network collaboration significantly reduces the error in the optimization results. As compared with the optimization based on a single network, the maximum error of multi-network coordination in single angle of attack optimization reduces by 16.0%. Consequently, this improves the reliability of airfoil optimization based on deep learning.

摘要

与计算流体动力学(CFD)相比,基于深度学习的翼型优化显著降低了计算成本。在基于深度学习的翼型优化中,由于神经网络中的不确定性,优化结果会偏离真实值。在这项工作中,基于ResNet和惩罚函数构建了一个多网络协作升阻比预测模型。采用拉丁超采样在2°-10°范围内选择四个具有显著不确定性的攻角,以限制预测误差。此外,使用随机漂移粒子群优化(RDPSO)算法来控制预测误差。实验结果表明,多网络协作显著降低了优化结果中的误差。与基于单网络的优化相比,多网络协同在单攻角优化中的最大误差降低了16.0%。因此,这提高了基于深度学习的翼型优化的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2d4/9486308/ab63156d1c63/fbioe-10-927064-g001.jpg

相似文献

1
Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network.
Front Bioeng Biotechnol. 2022 Sep 6;10:927064. doi: 10.3389/fbioe.2022.927064. eCollection 2022.
2
A reinforcement learning approach to airfoil shape optimization.
Sci Rep. 2023 Jun 16;13(1):9753. doi: 10.1038/s41598-023-36560-z.
3
Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
Bioinspir Biomim. 2012 Sep;7(3):036003. doi: 10.1088/1748-3182/7/3/036003. Epub 2012 Apr 12.
4
An Intelligent Method for Predicting the Pressure Coefficient Curve of Airfoil-Based Conditional Generative Adversarial Networks.
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3538-3552. doi: 10.1109/TNNLS.2021.3111911. Epub 2023 Jul 6.
5
Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove.
Heliyon. 2024 May 22;10(11):e31595. doi: 10.1016/j.heliyon.2024.e31595. eCollection 2024 Jun 15.
6
Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.
Int Sch Res Notices. 2015 Jan 14;2015:402358. doi: 10.1155/2015/402358. eCollection 2015.
7
Airfoil aerodynamic performance prediction using machine learning and surrogate modeling.
Heliyon. 2024 Apr 9;10(8):e29377. doi: 10.1016/j.heliyon.2024.e29377. eCollection 2024 Apr 30.
8
Experimental study of a passive control of airfoil lift using bioinspired feather flap.
Bioinspir Biomim. 2019 Sep 13;14(6):066005. doi: 10.1088/1748-3190/ab3d57.
9
Covert-inspired flaps for lift enhancement and stall mitigation.
Bioinspir Biomim. 2021 Jun 22;16(4). doi: 10.1088/1748-3190/abf3b3.
10
Optimization of ski jumper's posture considering lift-to-drag ratio and stability.
J Biomech. 2012 Aug 9;45(12):2125-32. doi: 10.1016/j.jbiomech.2012.05.036. Epub 2012 Jun 22.

本文引用的文献

1
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
2
Multi-Scale Feature Fusion Convolutional Neural Network for Indoor Small Target Detection.
Front Neurorobot. 2022 May 19;16:881021. doi: 10.3389/fnbot.2022.881021. eCollection 2022.
3
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
4
Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization.
Front Bioeng Biotechnol. 2022 Apr 11;10:865820. doi: 10.3389/fbioe.2022.865820. eCollection 2022.
5
Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
Front Bioeng Biotechnol. 2022 Feb 28;10:843020. doi: 10.3389/fbioe.2022.843020. eCollection 2022.
6
Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm.
Front Bioeng Biotechnol. 2022 Feb 11;9:817723. doi: 10.3389/fbioe.2021.817723. eCollection 2021.
7
Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots.
Front Bioeng Biotechnol. 2022 Jan 10;9:793782. doi: 10.3389/fbioe.2021.793782. eCollection 2021.
8
Forecasting short-term data center network traffic load with convolutional neural networks.
PLoS One. 2018 Feb 6;13(2):e0191939. doi: 10.1371/journal.pone.0191939. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验