文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习模型检测高粱上常见的瓢虫。

Detecting common coccinellids found in sorghum using deep learning models.

机构信息

Department of Computer Science, Kansas State University, Manhattan, KS, 66506, USA.

Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.

出版信息

Sci Rep. 2023 Jun 16;13(1):9748. doi: 10.1038/s41598-023-36738-5.


DOI:10.1038/s41598-023-36738-5
PMID:37328502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10276038/
Abstract

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.

摘要

高粱全球产量的增加有潜力满足不断增长的人口的许多需求。开发用于田间侦察的自动化技术对于长期和低成本生产至关重要。自 2013 年以来,甘蔗蚜虫(SCA)Melanaphis sacchari(Zehntner)已成为美国高粱生产区造成重大产量损失的重要经济害虫。充分管理 SCA 取决于昂贵的田间侦察,以确定害虫的存在和经济阈值水平,以喷洒杀虫剂。然而,由于杀虫剂对天敌的影响,迫切需要开发用于保护它们的自动化检测技术。天敌在 SCA 种群的管理中起着至关重要的作用。这些昆虫,主要是捕食性瓢虫,捕食 SCA,并有助于减少不必要的杀虫剂应用。尽管这些昆虫有助于调节 SCA 种群,但在田间侦察期间,对高粱等低价值作物中的这些昆虫进行检测和分类既耗时又低效。先进的深度学习软件为执行费力的农业自动任务提供了一种手段,包括昆虫的检测和分类。然而,尚未开发高粱上捕食性瓢虫的深度学习模型。因此,我们的目标是开发和训练机器学习模型来检测高粱中常见的捕食性瓢虫,并根据其属、种和亚科水平对其进行分类。我们训练了一个两阶段目标检测模型,具体来说,是带有特征金字塔网络(FPN)的基于区域的快速卷积神经网络(Faster R-CNN),以及在 YOLO(你只看一次)系列中(YOLOv5 和 YOLOv7)的一阶段检测模型,用于检测和分类高粱中常见的七种捕食性瓢虫(即,七星瓢虫,Coleomegilla maculata,Cycloneda sanguinea,Harmonia axyridis,Hippodamia convergens,Olla v-nigrum,Scymninae)。我们使用从 iNaturalist 项目中提取的图像来训练和评估 Faster R-CNN-FPN 和 YOLOv5 和 YOLOv7 模型。iNaturalist 是一个图像网络服务器,用于发布公民对与生物体有关的图像的观察结果。使用标准目标检测指标(如平均精度(AP)、AP@0.50 等)进行的实验评估表明,YOLOv7 模型在捕食性瓢虫图像上的表现最好,AP@0.50 高达 97.3,AP 高达 74.6。我们的研究为综合虫害管理领域贡献了自动化深度学习软件,使在高粱中更容易检测天敌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/9a01388ea408/41598_2023_36738_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/119551ed488f/41598_2023_36738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/5a408d823858/41598_2023_36738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/27cc964d3c89/41598_2023_36738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/783928020f13/41598_2023_36738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/07d418970c48/41598_2023_36738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/d853e02a2c23/41598_2023_36738_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/409aecf6deb1/41598_2023_36738_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/9a01388ea408/41598_2023_36738_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/119551ed488f/41598_2023_36738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/5a408d823858/41598_2023_36738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/27cc964d3c89/41598_2023_36738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/783928020f13/41598_2023_36738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/07d418970c48/41598_2023_36738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/d853e02a2c23/41598_2023_36738_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/409aecf6deb1/41598_2023_36738_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e6/10276038/9a01388ea408/41598_2023_36738_Fig8_HTML.jpg

相似文献

[1]
Detecting common coccinellids found in sorghum using deep learning models.

Sci Rep. 2023-6-16

[2]
Suppression of the Sugarcane Aphid, Melanaphis sacchari (Hemiptera: Aphididae), by Resident Natural Enemies on Susceptible and Resistant Sorghum Hybrids.

Environ Entomol. 2022-4-22

[3]
Impact of Planting Date on Melanaphis sacchari (Hemiptera: Aphididae) Population Dynamics and Grain Sorghum Yield.

J Econ Entomol. 2019-12-9

[4]
Development of Economic Thresholds for Sugarcane Aphid (Hemiptera: Aphididae) in Susceptible Grain Sorghum Hybrids.

J Econ Entomol. 2019-5-22

[5]
Life tables of the ladybird beetles Harmonia axyridis, Cycloneda sanguinea and Hippodamia convergens reared on the greenbug Schizaphis graminum.

Braz J Biol. 2022

[6]
Host Range and Phenology of Sugarcane Aphid (Hemiptera: Aphididae) and Natural Enemy Community in Sorghum in Haiti.

J Econ Entomol. 2022-12-14

[7]
Spatiotemporal distribution of Schizaphis graminum (Rondani) and its natural enemy Coccinella septempunctata (Linnaeus) in graniferous sorghum crops.

Braz J Biol. 2022

[8]
Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance.

Ecotoxicol Environ Saf. 2013-7-12

[9]
Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum.

Plant Sci. 2023-5

[10]
Reprogramming of sorghum proteome in response to sugarcane aphid infestation.

Plant Sci. 2022-7

引用本文的文献

[1]
Few-shot object detection for pest insects via features aggregation and contrastive learning.

Front Plant Sci. 2025-6-19

[2]
A novel dataset and deep learning object detection benchmark for grapevine pest surveillance.

Front Plant Sci. 2024-12-12

[3]
Comprehensive wheat coccinellid detection dataset: Essential resource for digital entomology.

Data Brief. 2024-6-4

本文引用的文献

[1]
Object Detection of Small Insects in Time-Lapse Camera Recordings.

Sensors (Basel). 2023-8-18

[2]
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning.

Front Plant Sci. 2022-12-16

[3]
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting.

Front Plant Sci. 2022-10-25

[4]
MSR-RCNN: A Multi-Class Crop Pest Detection Network Based on a Multi-Scale Super-Resolution Feature Enhancement Module.

Front Plant Sci. 2022-3-3

[5]
An Enhanced Insect Pest Counter Based on Saliency Map and Improved Non-Maximum Suppression.

Insects. 2021-8-6

[6]
Automatic ladybird beetle detection using deep-learning models.

PLoS One. 2021

[7]
Assessing the potential for deep learning and computer vision to identify bumble bee species from images.

Sci Rep. 2021-4-7

[8]
Plant diseases and pests detection based on deep learning: a review.

Plant Methods. 2021-2-24

[9]
Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring.

PLoS One. 2021

[10]
A multi-access identification key based on colour patterns in ladybirds (Coleoptera, Coccinellidae).

Zookeys. 2018-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索