Suppr超能文献

一个用于葡萄害虫监测的新型数据集和深度学习目标检测基准。

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance.

作者信息

Checola Giorgio, Sonego Paolo, Zorer Roberto, Mazzoni Valerio, Ghidoni Franca, Gelmetti Alberto, Franceschi Pietro

机构信息

Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.

Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.

出版信息

Front Plant Sci. 2024 Dec 12;15:1485216. doi: 10.3389/fpls.2024.1485216. eCollection 2024.

Abstract

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, , serving as the primary vector. FD is responsible for yield losses and high production costs due to mandatory insecticide treatments, infected plant uprooting, and replanting. Another potential FD vector is the mosaic leafhopper, , commonly found in agroecosystems. The current monitoring approach, which involves periodic human identification of yellow sticky traps, is labor-intensive and time-consuming. Therefore, there is a compelling need to develop an automatic pest detection system leveraging recent advances in computer vision and deep learning techniques. However, progress in developing such a system has been hindered by the lack of effective datasets for training. To fill this gap, our study contributes a fully annotated dataset of and from yellow sticky traps, which includes more than 600 images, with approximately 1500 identifications per class. Assisted by entomologists, we performed the annotation process, trained, and compared the performance of two state-of-the-art object detection algorithms: YOLOv8 and Faster R-CNN. Pre-processing, including automatic cropping to eliminate irrelevant background information and image enhancements to improve the overall quality of the dataset, was employed. Additionally, we tested the impact of altering image resolution and data augmentation, while also addressing potential issues related to class detection. The results, evaluated through 10-fold cross validation, revealed promising detection accuracy, with YOLOv8 achieving an mAP@0.5 of 92%, and an F1-score above 90%, with an mAP@[0.5:0.95] of 66%. Meanwhile, Faster R-CNN reached an mAP@0.5 and mAP@[0.5:0.95] of 86% and 55%, respectively. This outcome offers encouraging prospects for developing more effective management strategies in the fight against Flavescence dorée.

摘要

葡萄黄化病(FD)对葡萄树健康构成重大威胁,美国葡萄叶蝉是主要传播媒介。由于强制进行杀虫剂处理、拔除受感染植株并重新种植,FD导致产量损失和高昂的生产成本。另一种潜在的FD传播媒介是花叶蝉,常见于农业生态系统中。当前的监测方法是定期人工识别黄色粘虫板,既耗费人力又耗时。因此,迫切需要利用计算机视觉和深度学习技术的最新进展开发一种自动害虫检测系统。然而,由于缺乏有效的训练数据集,开发这样一个系统的进展受到了阻碍。为了填补这一空白,我们的研究贡献了一个来自黄色粘虫板的经过全面注释的数据集,其中包括600多张图像,每个类别约有1500个识别结果。在昆虫学家的协助下,我们进行了注释过程,训练并比较了两种先进的目标检测算法的性能:YOLOv8和Faster R-CNN。采用了预处理方法,包括自动裁剪以消除无关的背景信息和图像增强以提高数据集的整体质量。此外,我们测试了改变图像分辨率和数据增强的影响,同时还解决了与类别检测相关的潜在问题。通过10折交叉验证评估的结果显示出了有前景的检测准确率,YOLOv8的mAP@0.5为92%,F1分数高于90%,mAP@[0.5:0.95]为66%。同时,Faster R-CNN的mAP@0.5和mAP@[0.5:0.9]分别为86%和55%。这一结果为制定更有效的防治葡萄黄化病管理策略提供了令人鼓舞的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbf4/11669504/35e4d2ba0d1c/fpls-15-1485216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验