Suppr超能文献

载铈插层膨润土吸附性能的 CCD-RSM 和 GA-BPNN 优化及其在同时去除磷和氨氮中的应用。

Optimization of adsorption performance of cerium-loaded intercalated bentonite by CCD-RSM and GA-BPNN and its application in simultaneous removal of phosphorus and ammonia nitrogen.

机构信息

School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.

School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China.

出版信息

Chemosphere. 2023 Sep;336:139241. doi: 10.1016/j.chemosphere.2023.139241. Epub 2023 Jun 15.

Abstract

Excessive phosphorus (P) and ammonia nitrogen (NH-N) in water bodies can lead to eutrophication of the aquatic environment. Therefore, it is important to develop a technology that can efficiently remove P and NH-N from water. Here, the adsorption performance of cerium-loaded intercalated bentonite (Ce-bentonite) was optimized based on single-factor experiments using central composite design-response surface methodology (CCD-RSM) and genetic algorithm-back propagation neural network (GA-BPNN) models. Based on the determination coefficient (R), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), and root mean square error (RMSE), the GA-BPNN model was found to be more accurate in predicting adsorption conditions than the CCD-RSM model. The validation results showed that the removal efficiency of P and NH-N by Ce-bentonite under optimal adsorption conditions (adsorbent dosage = 1.0 g, adsorption time = 60 min, pH = 8, initial concentration = 30 mg/L) reached 95.70% and 65.93%. Furthermore, based on the application of these optimal conditions in simultaneous removal of P and NH-N by Ce-bentonite, pseudo-second order and Freundlich models were able to better analyze adsorption kinetics and isotherms. It is concluded that the optimization of experimental conditions by GA-BPNN has some guidance and provides a new approach to explore adsorption performance after optimizing the conditions.

摘要

水体中过量的磷 (P) 和氨氮 (NH-N) 会导致水环境污染的富营养化。因此,开发一种能够从水中高效去除 P 和 NH-N 的技术非常重要。在这里,采用中心复合设计-响应面法 (CCD-RSM) 和遗传算法-反向传播神经网络 (GA-BPNN) 模型,基于单因素实验对负载铈的插层膨润土 (Ce-bentonite) 的吸附性能进行了优化。根据确定系数 (R)、平均绝对误差 (MAE)、均方误差 (MSE)、平均绝对百分比误差 (MAPE) 和均方根误差 (RMSE),发现 GA-BPNN 模型比 CCD-RSM 模型更准确地预测了吸附条件。验证结果表明,Ce-bentonite 在最佳吸附条件(吸附剂用量=1.0g、吸附时间=60min、pH=8、初始浓度=30mg/L)下对 P 和 NH-N 的去除效率分别达到 95.70%和 65.93%。此外,基于这些最佳条件在 Ce-bentonite 同时去除 P 和 NH-N 中的应用,拟二级和 Freundlich 模型能够更好地分析吸附动力学和等温线。因此,GA-BPNN 优化实验条件具有一定的指导意义,并为优化条件后探索吸附性能提供了一种新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验