INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France.
INSERM UMRS-1310, Paris Saclay University, Villejuif, France.
Exp Hematol. 2023 Aug;124:22-35.e3. doi: 10.1016/j.exphem.2023.06.002. Epub 2023 Jun 16.
Generating hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has been a long-lasting quest in the field of hematopoiesis. Previous studies suggested that enforced expression of BCR-ABL, the unique oncogenic driver of chronic myelogeneous leukemia (CML), in embryonic stem cells (ESCs)-derived hematopoietic cells is sufficient to confer long-term in vivo repopulating potential. To precisely uncover the molecular events regulated by the tyrosine kinase activity of BCR-ABL1 (p210) during the course of hematopoietic differentiation, we engineered a Tet-ON inducible system to modulate its expression in murine ESCs (mESCs). We showed in unique site-directed knock-in ESC model that BCR-ABL expression tightly regulated by doxycycline (dox) controls the formation and the maintenance of immature hematopoietic progenitors. Interestingly, these progenitors can be expanded in vitro for several passages in the presence of dox. Our analysis of cell surface markers and transcriptome compared with wild-type fetal and adult HSCs unraveled a similar molecular signature. Long-term culture initiating cell (LTC-IC) assay confirmed their self-renewal capacities albeit with a differentiation bias toward erythroid and myeloid cells. Collectively, our novel Tet-ON system represents a unique in vitro model to shed lights on ESC-derived hematopoiesis, CML initiation, and maintenance.
从多能干细胞(PSCs)中生成造血干细胞(HSCs)一直是造血领域的长期追求。以前的研究表明,在胚胎干细胞(ESCs)衍生的造血细胞中强制表达慢性髓系白血病(CML)的独特致癌驱动因子 BCR-ABL,足以赋予体内长期重编程潜力。为了精确揭示 BCR-ABL1(p210)的酪氨酸激酶活性在造血分化过程中调控的分子事件,我们设计了一个 Tet-ON 诱导系统来调节其在鼠胚胎干细胞(mESCs)中的表达。我们在独特的靶向敲入 ESC 模型中表明,BCR-ABL 的表达受强力霉素(dox)的严格调控,控制着未成熟造血祖细胞的形成和维持。有趣的是,在 dox 的存在下,这些祖细胞可以在体外进行多次传代扩增。与野生型胎儿和成体 HSCs 的细胞表面标志物和转录组分析相比,我们揭示了一个相似的分子特征。长期培养起始细胞(LTC-IC)测定证实了它们的自我更新能力,尽管它们向红细胞和髓系细胞的分化偏向。总的来说,我们的新型 Tet-ON 系统代表了一个独特的体外模型,可用于阐明 ESC 衍生的造血、CML 的起始和维持。