Suppr超能文献

相似文献

1
Semi-supervised calibration of noisy event risk (SCANER) with electronic health records.
J Biomed Inform. 2023 Aug;144:104425. doi: 10.1016/j.jbi.2023.104425. Epub 2023 Jun 16.
2
Semisupervised Calibration of Risk with Noisy Event Times (SCORNET) using electronic health record data.
Biostatistics. 2023 Jul 14;24(3):760-775. doi: 10.1093/biostatistics/kxac003.
3
Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) with Electronic Health Records.
J Biomed Inform. 2024 Sep;157:104685. doi: 10.1016/j.jbi.2024.104685. Epub 2024 Jul 14.
5
Semi-supervised approach to event time annotation using longitudinal electronic health records.
Lifetime Data Anal. 2022 Jul;28(3):428-491. doi: 10.1007/s10985-022-09557-5. Epub 2022 Jun 26.
6
Weakly Semi-supervised phenotyping using Electronic Health records.
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.
8
Automated feature selection of predictors in electronic medical records data.
Biometrics. 2019 Mar;75(1):268-277. doi: 10.1111/biom.12987. Epub 2019 Apr 2.
9
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.

引用本文的文献

1
Artificial Intelligence-Based Methods: The Path Forward in Achieving Equity in Lung Cancer Screening and Evaluation.
Cancer Innov. 2025 Jun 20;4(4):e70019. doi: 10.1002/cai2.70019. eCollection 2025 Aug.
2
Deep learning with noisy labels in medical prediction problems: a scoping review.
J Am Med Inform Assoc. 2024 Jun 20;31(7):1596-1607. doi: 10.1093/jamia/ocae108.

本文引用的文献

1
Efficient Evaluation of Prediction Rules in Semi-Supervised Settings under Stratified Sampling.
J R Stat Soc Series B Stat Methodol. 2022 Sep;84(4):1353-1391. doi: 10.1111/rssb.12502. Epub 2022 Apr 26.
3
Introducing the FAIR Principles for research software.
Sci Data. 2022 Oct 14;9(1):622. doi: 10.1038/s41597-022-01710-x.
5
Optimal Designs of Two-Phase Studies.
J Am Stat Assoc. 2020;115(532):1946-1959. doi: 10.1080/01621459.2019.1671200. Epub 2019 Oct 29.
8
High-throughput phenotyping with electronic medical record data using a common semi-supervised approach (PheCAP).
Nat Protoc. 2019 Dec;14(12):3426-3444. doi: 10.1038/s41596-019-0227-6. Epub 2019 Nov 20.
9
Determining the Time of Cancer Recurrence Using Claims or Electronic Medical Record Data.
JCO Clin Cancer Inform. 2018 Dec;2:1-10. doi: 10.1200/CCI.17.00163.
10
DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network.
BMC Med Res Methodol. 2018 Feb 26;18(1):24. doi: 10.1186/s12874-018-0482-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验