Suppr超能文献

纤维增强水合网络再现了关节软骨的多孔弹性力学。

Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage.

机构信息

Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TW, UK.

出版信息

Acta Biomater. 2023 Sep 1;167:69-82. doi: 10.1016/j.actbio.2023.06.015. Epub 2023 Jun 17.

Abstract

The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. STATEMENT OF SIGNIFICANCE: Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair.

摘要

多孔弹性在 20 世纪 60 年代的科学文献中就确立了其在关节软骨功能性能方面的作用。尽管人们对这一主题有广泛的了解,但很少有人试图设计多孔弹性,据我们所知,也没有展示出接近生理性能的工程多孔弹性材料。在本文中,我们报告了一种工程材料的开发,该材料开始接近生理多孔弹性。我们使用流体负载分数来量化多孔弹性,应用混合物理论来模拟材料系统,并使用原代人骨髓间充质干细胞来确定细胞相容性。该设计方法基于纤维增强水合网络,并使用常规制造方法(静电纺丝)和材料(聚己内酯和明胶)来开发工程多孔弹性材料。这种复合材料的平均峰值流体负载分数达到 68%,与混合物理论一致,并表现出细胞相容性。这项工作为设计多孔弹性软骨植入物和开发支架系统以研究软骨细胞的机械生物学和组织工程奠定了基础。

意义声明

多孔弹性驱动关节软骨的功能力学(承载和润滑)。在这项工作中,我们开发了生产一种多孔弹性材料的设计原理和方法,这种材料被称为纤维增强水合网络(FiHyTM),它开始接近关节软骨的天然性能。这是第一个能够超过各向同性线性多孔弹性理论的工程材料系统。这里开发的框架使多孔弹性的基础研究和用于软骨修复的转化材料的开发成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验