Suppr超能文献

数字肝脏铁含量:用于肝脏样本中空间分辨组织学铁定量分析的人工智能模型。

Digital Hepatic Iron Content: An Artificial Intelligence Model for Spatially Resolved Histologic Iron Quantitative Analysis in Liver Samples.

机构信息

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.

Aiforia Plc. Cambridge Innovation Center, Cambridge, Minnesota.

出版信息

Lab Invest. 2023 Sep;103(9):100200. doi: 10.1016/j.labinv.2023.100200. Epub 2023 Jun 16.

Abstract

Currently, the precise evaluation of tissue hepatic iron content (HIC) requires laboratory testing using tissue-destructive methods based on colorimetry or spectrophotometry. To maximize the use of routine histologic stains in this context, we developed an artificial intelligence (AI) model for the recognition and spatially resolved measurement of iron in liver samples. Our AI model was developed using a cloud-based, supervised deep learning platform (Aiforia Technologies). Using digitized Pearl Prussian blue iron stain whole slide images representing the full spectrum of changes seen in hepatic iron overload, our training set consisted of 59 cases, and our validation set consisted of 19 cases. The study group consisted of 98 liver samples from 5 different laboratories, for which tissue quantitative analysis using inductively coupled plasma mass spectrometry was available, collected between 2012 and 2022. The correlation between the AI model % iron area and HIC was Rs = 0.93 for needle core biopsy samples (n = 73) and Rs = 0.86 for all samples (n = 98). The digital hepatic iron index (HII) was highly correlated with HII > 1 (area under the curve [AUC] = 0.93) and HII > 1.9 (AUC = 0.94). The percentage area of iron within hepatocytes (vs Kupffer cells and portal tract iron) identified patients with any hereditary hemochromatosis-related mutations (either homozygous or heterozygous) (AUC = 0.65, P = .01) with at least similar accuracy than HIC, HII, and any histologic iron score. The correlation between the Deugnier and Turlin score and the AI model % iron area for all patients was Rs = 0.87 for total score, Rs = 0.82 for hepatocyte iron score, and Rs = 0.84 for Kupffer cell iron score. Iron quantitative analysis using our AI model was highly correlated with both detailed histologic scoring systems and tissue quantitative analysis using inductively coupled plasma mass spectrometry and offers advantages (related to the spatial resolution of iron analysis and the nontissue-destructive nature of the test) over standard quantitative methods.

摘要

目前,组织铁含量(HIC)的精确评估需要使用基于比色法或分光光度法的破坏性组织检测实验室方法。为了最大限度地利用常规组织学染色在这方面的应用,我们开发了一种用于识别和空间分辨测量肝组织中铁含量的人工智能(AI)模型。我们的 AI 模型是使用基于云的监督深度学习平台(Aiforia Technologies)开发的。我们的训练集包括 59 例代表肝铁过载所有变化谱的 Pearl 普鲁士蓝铁染色全玻片图像,验证集包括 19 例。研究组包括 2012 年至 2022 年期间来自 5 个不同实验室的 98 个肝组织样本,这些样本均采用电感耦合等离子体质谱法进行组织定量分析。AI 模型的铁面积百分比与 HIC 之间的相关性,对于针芯活检样本(n=73)为 Rs=0.93,对于所有样本(n=98)为 Rs=0.86。数字肝铁指数(HII)与 HII>1(曲线下面积[AUC]=0.93)和 HII>1.9(AUC=0.94)高度相关。肝细胞内铁含量的百分比(与库普弗细胞和门脉铁含量相比)可以识别出具有任何遗传性血色素沉着症相关突变(无论是纯合子还是杂合子)的患者(AUC=0.65,P=0.01),其准确性至少与 HIC、HII 和任何组织学铁评分相同。所有患者的 Deugnier 和 Turlin 评分与 AI 模型铁面积百分比之间的相关性,总分为 Rs=0.87,肝细胞铁评分 Rs=0.82,库普弗细胞铁评分 Rs=0.84。使用我们的 AI 模型进行铁定量分析与详细的组织学评分系统高度相关,与使用电感耦合等离子体质谱法进行组织定量分析高度相关,并具有优于标准定量方法的优势(与铁分析的空间分辨率和测试的非组织破坏性有关)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验