Suppr超能文献

基于深度学习的改良YOLOv7-E6E模型在超声图像中检测妊娠囊

Deep-learning-based gestational sac detection in ultrasound images using modified YOLOv7-E6E model.

作者信息

Kim Tae-Kyeong, Kim Jin Soo, Cho Hyun-Chong

机构信息

Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Korea.

College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.

出版信息

J Anim Sci Technol. 2023 May;65(3):627-637. doi: 10.5187/jast.2023.e43. Epub 2023 May 31.

Abstract

As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

摘要

随着人口和收入水平的提高,肉类消费量每年稳步增长。然而,同期生产肉类的农场和农民数量却在减少,导致肉类自给率下降。信息通信技术(ICT)已开始应用于降低畜牧场的劳动力和生产成本,并提高生产率。这项技术可用于母猪的快速妊娠诊断;母猪妊娠囊的位置和大小与农场的生产率直接相关。在本研究中,提出了一种从超声图像确定母猪妊娠囊数量的系统。该系统使用了YOLOv7-E6E模型,将激活函数从sigmoid加权线性单元(SiLU)改为多激活函数(SiLU + Mish)。此外,上采样方法从最近邻改为双三次以提高性能。使用原始数据对原始模型进行训练的模型实现了86.3%的平均精度。当应用所提出的多激活函数、上采样和自动增强时,性能分别提高了0.3%、0.9%和0.9%。当同时应用所有三种提出的方法时,实现了3.5%至89.8%的显著性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b0/10271918/36f79e6b4519/jast-65-3-627-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验