Yamari Imane, Abchir Oussama, Mali Suraj N, Errougui Abdelkbir, Talbi Mohammed, Kouali Mhammed El, Chtita Samir
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco.
Department of Pharmaceutical Sciences & Technology, BIRLA INSTITUTE OF TECHNOLOGY (Mesra Campus), Mesra 835215, Jharkhand, India.
Sci Afr. 2023 Sep;21:e01754. doi: 10.1016/j.sciaf.2023.e01754. Epub 2023 Jun 13.
Originating in Wuhan, the COVID-19 pandemic wave has had a profound impact on the global healthcare system. In this study, we used a 2D QSAR technique, ADMET analysis, molecular docking, and dynamic simulations to sort and evaluate the performance of thirty-nine bioactive analogues of 9,10-dihydrophenanthrene. The primary goal of the study is to use computational approaches to create a greater variety of structural references for the creation of more potent SARS-CoV-2 3Clpro inhibitors. This strategy is to speed up the process of finding active chemicals. Molecular descriptors were calculated using 'PaDEL' and 'ChemDes' software, and then redundant and non-significant descriptors were eliminated by a module in 'QSARINS ver. 2.2.2'. Subsequently, two statistically robust QSAR models were developed by applying multiple linear regression (MLR) methods. The correlation coefficients obtained by the two models are 0.89 and 0.82, respectively. These models were then subjected to internal and external validation tests, Y-randomization, and applicability domain analysis. The best model developed is applied to designate new molecules with good inhibitory activity values against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). We also examined various pharmacokinetic properties using ADMET analysis. Then, through molecular docking simulations, we used the crystal structure of the main protease of SARS-CoV-2 (3CLpro/Mpro) in a complex with the covalent inhibitor "Narlaprevir" (PDB ID: 7JYC). We also supported our molecular docking predictions with an extended molecular dynamics simulation of a docked ligand-protein complex. We hope that the results obtained in this study can be used as good anti-SARS-CoV-2 inhibitors.
起源于武汉的新冠疫情浪潮对全球医疗系统产生了深远影响。在本研究中,我们使用二维定量构效关系(2D QSAR)技术、药物代谢及毒性预测(ADMET)分析、分子对接和动力学模拟,对9,10-二氢菲的39种生物活性类似物的性能进行分类和评估。该研究的主要目标是利用计算方法创建更多种类的结构参考,以开发更有效的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)3C样蛋白酶(3Clpro)抑制剂。此策略旨在加速寻找活性化合物的进程。使用“PaDEL”和“ChemDes”软件计算分子描述符,然后通过“QSARINS ver. 2.2.2”中的一个模块消除冗余和无意义的描述符。随后,应用多元线性回归(MLR)方法建立了两个统计稳健的QSAR模型。这两个模型得到的相关系数分别为0.89和0.82。然后对这些模型进行内部和外部验证测试、Y随机化和适用域分析。所开发的最佳模型用于指定对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)具有良好抑制活性值的新分子。我们还使用ADMET分析研究了各种药代动力学性质。然后,通过分子对接模拟,我们使用了SARS-CoV-2主要蛋白酶(3CLpro/Mpro)与共价抑制剂“那洛普韦”(PDB ID:7JYC)形成复合物的晶体结构。我们还通过对接配体-蛋白质复合物的扩展分子动力学模拟来支持我们的分子对接预测。我们希望本研究中获得的结果可作为良好的抗SARS-CoV-2抑制剂。