Nelson A T, Cicardi M E, Markandaiah S S, Han J, Philp N, Welebob E, Haeusler A R, Pasinelli P, Manfredi G, Kawamata H, Trotti D
Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
bioRxiv. 2023 Jun 7:2023.06.07.544100. doi: 10.1101/2023.06.07.544100.
The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC) nucleotide repeat expansion (NRE) occurring in the first intron of the gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, although its potential role in disease pathogenesis is unknown. Here, we identified alterations in glucose metabolic pathways and ATP levels in the brain of asymptomatic C9-BAC mice. We found that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also found that one of the arginine-rich DPRs (PR) can directly contribute to glucose metabolism and metabolic stress. These findings provide a mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and support a feedforward loop model that opens several opportunities for therapeutic intervention.
肌萎缩侧索硬化症和额颞叶痴呆最常见的遗传病因是基因(C9)第一内含子中出现的(GGGGCC)核苷酸重复扩增(NRE)。在C9-NRE携带者中,即使在症状前期阶段,也始终观察到脑葡萄糖代谢减退,尽管其在疾病发病机制中的潜在作用尚不清楚。在这里,我们在无症状C9-BAC小鼠的大脑中发现了葡萄糖代谢途径和ATP水平的改变。我们发现,通过激活GCN2激酶,葡萄糖代谢减退驱动二肽重复蛋白(DPRs)的产生,损害C9患者来源神经元的存活,并引发C9-BAC小鼠的运动功能障碍。我们还发现,富含精氨酸的DPRs之一(PR)可直接影响葡萄糖代谢和代谢应激。这些发现提供了能量失衡与C9-ALS/FTD发病机制之间的机制联系,并支持一种前馈回路模型,该模型为治疗干预提供了多个机会。