Suppr超能文献

缺氧-葡萄糖剥夺外周血单核细胞可预防缺血性脑卒中。

Oxygen-Glucose Deprived Peripheral Blood Mononuclear Cells Protect Against Ischemic Stroke.

机构信息

Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan.

Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.

出版信息

Neurotherapeutics. 2023 Sep;20(5):1369-1387. doi: 10.1007/s13311-023-01398-w. Epub 2023 Jun 19.

Abstract

Stroke is the leading cause of severe long-term disability. Cell therapy has recently emerged as an approach to facilitate functional recovery in stroke. Although administration of peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation (OGD-PBMCs) has been shown to be a therapeutic strategy for ischemic stroke, the recovery mechanisms remain largely unknown. We hypothesised that cell-cell communications within PBMCs and between PBMCs and resident cells are necessary for a polarising protective phenotype. Here, we investigated the therapeutic mechanisms underlying the effects of OGD-PBMCs through the secretome. We compared levels of transcriptomes, cytokines, and exosomal microRNA in human PBMCs by RNA sequences, Luminex assay, flow cytometric analysis, and western blotting under normoxic and OGD conditions. We also performed microscopic analyses to assess the identification of remodelling factor-positive cells and evaluate angiogenesis, axonal outgrowth, and functional recovery by blinded examination by administration of OGD-PBMCs after ischemic stroke in Sprague-Dawley rats. We found that the therapeutic potential of OGD-PBMCs was mediated by a polarised protective state through decreased levels of exosomal miR-155-5p, and upregulation of vascular endothelial growth factor and a pluripotent stem cell marker stage-specific embryonic antigen-3 through the hypoxia-inducible factor-1α axis. After administration of OGD-PBMCs, microenvironment changes in resident microglia by the secretome promoted angiogenesis and axonal outgrowth, resulting in functional recovery after cerebral ischemia. Our findings revealed the mechanisms underlying the refinement of the neurovascular unit by secretome-mediated cell-cell communications through reduction of miR-155-5p from OGD-PBMCs, highlighting the therapeutic potential carrier of this approach against ischemic stroke.

摘要

中风是导致严重长期残疾的主要原因。细胞疗法最近作为一种促进中风功能恢复的方法出现。虽然已经证明氧葡萄糖剥夺(OGD-PBMCs)预处理的外周血单核细胞的给药是缺血性中风的一种治疗策略,但恢复机制在很大程度上仍然未知。我们假设 PBMC 内和 PBMC 与驻留细胞之间的细胞间通讯对于极化的保护表型是必要的。在这里,我们通过分泌组研究了 OGD-PBMCs 作用的治疗机制。我们通过 RNA 序列、Luminex 测定、流式细胞术分析和 Western blot 在常氧和 OGD 条件下比较了人 PBMCs 的转录组、细胞因子和外泌体 microRNA 的水平。我们还进行了显微镜分析,以评估通过在 Sprague-Dawley 大鼠缺血性中风后给予 OGD-PBMCs 来鉴定重塑因子阳性细胞和评估血管生成、轴突生长和功能恢复的情况,并通过盲法检查进行评估。我们发现,OGD-PBMCs 的治疗潜力是通过降低外泌体 miR-155-5p 的水平、通过缺氧诱导因子-1α 轴上调血管内皮生长因子和多能干细胞标记物阶段特异性胚胎抗原-3 来介导的极化保护状态。给予 OGD-PBMCs 后,分泌组改变驻留小胶质细胞的微环境,促进血管生成和轴突生长,从而导致脑缺血后的功能恢复。我们的研究结果揭示了通过分泌组介导的细胞间通讯减少 OGD-PBMCs 中的 miR-155-5p 来细化神经血管单元的机制,强调了这种方法作为治疗缺血性中风的潜在治疗载体。

相似文献

引用本文的文献

本文引用的文献

2
HIF‑1α in cerebral ischemia (Review).低氧诱导因子 1α 在脑缺血中的作用(综述)。
Mol Med Rep. 2022 Feb;25(2). doi: 10.3892/mmr.2021.12557. Epub 2021 Dec 8.
8
Cell-Based Therapy for Stroke: Musing With Muse Cells.基于细胞的中风治疗:用 Muse 细胞思考。
Stroke. 2020 Sep;51(9):2854-2862. doi: 10.1161/STROKEAHA.120.030618. Epub 2020 Aug 19.
10
The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.《ARRIVE指南2.0:动物研究报告的更新指南》
J Cereb Blood Flow Metab. 2020 Sep;40(9):1769-1777. doi: 10.1177/0271678X20943823. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验