Suppr超能文献

使用混合模型方法对选择实验进行分析。

Analysis of selection experiments using mixed model methodology.

作者信息

Sorensen D A, Kennedy B W

出版信息

J Anim Sci. 1986 Jul;63(1):245-58. doi: 10.2527/jas1986.631245x.

Abstract

Use of mixed model techniques to estimate genetic variance and selection response is illustrated by simple examples. A minimum variance quadratic unbiased estimator (MIVQUE) of genetic variance using a reduced animal model is derived. Properties of the mixed model estimator of response are discussed and illustrated with results from Monte Carlo simulation. The mixed model estimator of response requires knowledge of the base population heritability. When the latter is not known, simulation results suggest that using a MIVQUE estimate obtained from the data yields estimates of response in good agreement with the true response. If a number of conditions are satisfied, the mixed model estimator of response partitions the phenotypic trend into its genetic and environmental components, without need for a control population. These conditions are unlikely to hold in long-term selection experiments. More work is needed to understand the implications of finite numbers of loci or the presence of unaccounted natural selection opposing artificial selection, for example, on the properties of the mixed model estimator of response.

摘要

通过简单示例说明了使用混合模型技术来估计遗传方差和选择反应。推导了使用简化动物模型的遗传方差的最小方差二次无偏估计量(MIVQUE)。讨论了反应的混合模型估计量的性质,并用蒙特卡罗模拟结果进行了说明。反应的混合模型估计量需要了解基础群体遗传力。当后者未知时,模拟结果表明,使用从数据中获得的MIVQUE估计值可得到与真实反应高度一致的反应估计值。如果满足若干条件,反应的混合模型估计量可将表型趋势分解为其遗传和环境成分,而无需对照群体。这些条件在长期选择实验中不太可能成立。需要开展更多工作来理解有限数量的基因座或存在与人工选择相反的未考虑到的自然选择对反应的混合模型估计量性质的影响,例如。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验