Niu Wenhui, Fu Yubin, Serra Gianluca, Liu Kun, Droste Jörn, Lee Yeonju, Ling Zhitian, Xu Fugui, Cojal González José D, Lucotti Andrea, Rabe Jürgen P, Ryan Hansen Michael, Pisula Wojciech, Blom Paul W M, Palma Carlos-Andres, Tommasini Matteo, Mai Yiyong, Ma Ji, Feng Xinliang
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
Angew Chem Int Ed Engl. 2023 Aug 28;62(35):e202305737. doi: 10.1002/anie.202305737. Epub 2023 Jul 18.
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
将纳米孔引入石墨烯纳米结构已被证明是调节其带隙和电子结构的有效工具。然而,由于缺乏有效的合成策略,在原子水平上精确地将均匀纳米孔嵌入石墨烯纳米带(GNR)中仍未得到充分发展,尤其是在溶液合成方面。在此,我们报道了首例通过带有预先安装的六边形纳米孔的定制聚苯撑前体(P1)的高效肖尔反应,在溶液中合成具有完全共轭主链的多孔GNR(pGNR)。所得的pGNR具有周期性的亚纳米孔,孔径均匀为0.6纳米,相邻孔间距为1.7纳米。为了巩固我们的设计策略,成功合成了两种与pGNR的短链具有相同孔径的多孔模型化合物(1a、1b)。通过各种光谱分析研究了pGNR的化学结构和光物理性质。值得注意的是,与具有相似宽度的无孔GNR相比,嵌入的周期性纳米孔大大降低了π共轭程度,并减轻了带间π-π相互作用,使pGNR具有明显增大的带隙和增强的液相加工性能。