Suppr超能文献

一种基于权重特征融合的高效单阶段小目标检测器。

An efficient single shot detector with weight-based feature fusion for small object detection.

机构信息

School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China.

Beijing Institute of Environmental Features, Beijing, 100854, China.

出版信息

Sci Rep. 2023 Jun 19;13(1):9883. doi: 10.1038/s41598-023-36972-x.

Abstract

Object detection has been widely applied in various fields with the rapid development of deep learning in recent years. However, detecting small objects is still a challenging task because of the limited information in features and the complex background. To further enhance the detection accuracy of small objects, this paper proposes an efficient single-shot detector with weight-based feature fusion (WFFA-SSD). First, a weight-based feature fusion block is designed to adaptively fuse information from several multi-scale feature maps. The feature fusion block can exploit contextual information for feature maps with large resolutions. Then, a context attention block is applied to reinforce the local region in the feature maps. Moreover, a pyramids aggregation block is applied to combine the two feature pyramids to classify and locate target objects. The experimental results demonstrate that the proposed WFFA-SSD achieves higher mean Average Precision (mAP) under the premise of ensuring real-time performance. WFFA-SSD increases the mAP of the car by 4.12% on the test set of the CARPK.

摘要

目标检测近年来随着深度学习的快速发展已广泛应用于各个领域。然而,由于特征中的信息量有限和复杂的背景,检测小目标仍然是一项具有挑战性的任务。为了进一步提高小目标的检测精度,本文提出了一种基于权重的特征融合(WFFA-SSD)的高效单阶段检测器。首先,设计了一个基于权重的特征融合块,以自适应地融合来自几个多尺度特征图的信息。该特征融合块可以利用大分辨率特征图的上下文信息。然后,应用上下文注意块来加强特征图中的局部区域。此外,应用金字塔聚合块将两个特征金字塔组合起来,以分类和定位目标对象。实验结果表明,所提出的 WFFA-SSD 在保证实时性能的前提下,实现了更高的平均精度(mAP)。在 CARPK 的测试集上,WFFA-SSD 使汽车的 mAP 提高了 4.12%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de7/10279749/2058cb2a7baf/41598_2023_36972_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验