Suppr超能文献

同轴纳米线电极可实现卓越的燃料电池耐久性。

Coaxial Nanowire Electrodes Enable Exceptional Fuel Cell Durability.

作者信息

Yang Gaoqiang, Komini Babu Siddharth, Liyanage Wipula P R, Martinez Ulises, Routkevitch Dmitri, Mukundan Rangachary, Borup Rodney L, Cullen David A, Spendelow Jacob S

机构信息

MPA-11, Material Physics and Application, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

InRedox, Longmont, CO, 80504, USA.

出版信息

Adv Mater. 2023 Sep;35(39):e2301264. doi: 10.1002/adma.202301264. Epub 2023 Jul 23.

Abstract

Polymer-electrolyte-membrane fuel cells (PEMFCs) hold great promise for applications in clean energy conversion, but cost and durability continue to limit commercialization. This work presents a new class of catalyst/electrode architecture that does not rely on Pt particles or carbon supports, eliminating the primary degradation mechanisms in conventional electrodes, and thereby enabling transformative durability improvements. The coaxial nanowire electrode (CANE) architecture consists of an array of vertically aligned nanowires, each comprising an ionomer core encapsulated by a nanoscale Pt film. This unique design eliminates the triple-phase boundary and replaces it with two double-phase boundaries, increasing Pt utilization. It also eliminates the need for carbon support and ionomer binder, enabling improved durability and faster mass transport. Fuel cell membrane electrode assemblies based on CANEs demonstrate extraordinary durability in accelerated stress tests (ASTs), with only 2% and 5% loss in performance after 5000 support AST cycles and 30000 catalysts AST cycles, respectively. The high power density and extremely high durability provided by CANEs can enable a paradigm shift from random electrodes based on unstable platinum nanoparticles dispersed on carbon to ordered electrodes based on durable Pt nanofilms, facilitating rapid deployment of fuel cells in transportation and other clean energy applications.

摘要

聚合物电解质膜燃料电池(PEMFC)在清洁能源转换应用方面前景广阔,但成本和耐久性仍然限制着其商业化。这项工作提出了一种新型的催化剂/电极结构,该结构不依赖于铂颗粒或碳载体,消除了传统电极中的主要降解机制,从而实现了耐久性的变革性提升。同轴纳米线电极(CANE)结构由垂直排列的纳米线阵列组成,每根纳米线都包含一个由纳米级铂膜包裹的离聚物核心。这种独特的设计消除了三相边界,并用两个双相边界取而代之,提高了铂的利用率。它还消除了对碳载体和离聚物粘合剂的需求,从而提高了耐久性并加快了传质速度。基于CANE的燃料电池膜电极组件在加速应力测试(AST)中表现出非凡的耐久性,在5000次支撑AST循环和30000次催化剂AST循环后,性能分别仅损失2%和5%。CANE提供的高功率密度和极高的耐久性能够实现从基于分散在碳上的不稳定铂纳米颗粒的随机电极到基于耐用铂纳米膜的有序电极的范式转变,有助于燃料电池在交通运输和其他清洁能源应用中的快速部署。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验