Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble, France.
Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Nanoscale. 2023 Jul 6;15(26):11141-11154. doi: 10.1039/d2nr07164a.
We demonstrate control of the structure and morphology of polypeptide/surfactant films at the air/water interface as a function of the maximum compression ratio of the surface area, exploiting a recently developed film formation mechanism that requires minimal quantities of materials involving the dissociation of aggregates. The systems studied are poly(L-lysine) (PLL) or poly(L-arginine) (PLA) with sodium dodecyl sulfate (SDS), chosen because the surfactant (i) interacts more strongly with the latter polypeptide due to the formation of hydrogen bonds between the guanidinium group and its oxygen atoms, and (ii) induces bulk β-sheet and α-helix conformations of the respective polypeptides. The working hypothesis is that such different interactions may be used to tune the film properties when compressed to form extended structures (ESs). Neutron reflectometry reveals that application of a high compression ratio (4.5 : 1) results in the nanoscale self-assembly of ESs containing up to two PLL-wrapped SDS bilayers. Brewster angle microscopy provides images of the PLL/SDS ESs as discrete regions on the micrometre scale while additional linear regions of PLA/SDS ESs mark macroscopic film folding. Ellipsometry demonstrates high stability of the different ESs formed. The collapse of PLL/SDS films upon compression to a very high ratio (10 : 1) is irreversible due to the formation of solid domains that remain embedded in the film upon expansion while that of PLA/SDS films is reversible. These findings demonstrate that differences in the side group of a polypeptide can have a major influence on controlling the film properties, marking a key step in the development of this new film formation mechanism for the design of biocompatible and/or biodegradable films with tailored properties for applications in tissue engineering, biosensors and antimicrobial coatings.
我们展示了在空气/水界面处多肽/表面活性剂膜的结构和形态作为表面积的最大压缩比的函数的控制,利用最近开发的需要最小量的涉及聚集物的离解的材料的薄膜形成机制。所研究的系统是聚(L-赖氨酸)(PLL)或聚(L-精氨酸)(PLA)与十二烷基硫酸钠(SDS),因为(i)表面活性剂与后者多肽的相互作用更强,由于胍基与氧原子之间形成氢键,以及(ii)诱导各自多肽的体β-折叠和α-螺旋构象。工作假说是,当压缩形成扩展结构(ES)时,这种不同的相互作用可以用于调整膜性能。中子反射测量揭示了高压缩比(4.5:1)的应用导致包含多达两个 PLL 包裹的 SDS 双层的 ES 的纳米级自组装。掠入射显微镜提供了 PLL/SDS ES 的图像,作为微米尺度上的离散区域,而 PLA/SDS ES 的附加线性区域则标记了宏观的膜折叠。椭圆光度法证明了不同 ESs 的高稳定性。由于形成的固体域嵌入在膜中,当 PLL/SDS 膜在非常高的比(10:1)下压缩时,其坍塌是不可逆的,而 PLA/SDS 膜的坍塌是可逆的。这些发现表明,多肽的侧基的差异可以对控制膜性能产生重大影响,这标志着这种新的薄膜形成机制的发展的关键步骤,用于设计具有定制性能的生物相容性和/或可生物降解的薄膜,用于组织工程、生物传感器和抗菌涂层。