Carrascosa-Tejedor Javier, Tummino Andrea, Fehér Bence, Kardos Attila, Efstratiou Marina, Skoda Maximilian W A, Gutfreund Philipp, Maestro Armando, Lawrence M Jayne, Campbell Richard A, Varga Imre
Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France.
Langmuir. 2023 Oct 24;39(42):14869-14879. doi: 10.1021/acs.langmuir.3c01514. Epub 2023 Oct 15.
The interfacial structure and morphology of films spread from hyperbranched polyethylene imine/sodium dodecyl sulfate (PEI/SDS) aggregates at the air/water interface have been resolved for the first time with respect to polyelectrolyte charged density. A recently developed method to form efficient films from the dissociation of aggregates using a minimal quantity of materials is exploited as a step forward in enhancing understanding of the film properties with a view to their future use in technological applications. Interfacial techniques that resolve different time and length scales, namely, ellipsometry, Brewster angle microscopy, and neutron reflectometry, are used. Extended structures of both components are formed under a monolayer of the surfactant with bound polyelectrolytes upon film compression on subphases adjusted to pH 4 or 10, corresponding to high and low charge density of the polyelectrolyte, respectively. A rigid film is related to compact conformation of the PEI in the interfacial structure at pH 4, while it is observed that aggregates remain embedded in mobile films at pH 10. The ability to compact surfactants in the monolayer to the same extent as its maximum coverage in the absence of polyelectrolyte is distinct from the behavior observed for spread films involving linear polyelectrolytes, and intriguingly evidence points to the formation of extended structures over the full range of surface pressures. We conclude that the molecular architecture and charge density can be important parameters in controlling the structures and properties of spread polyelectrolyte/surfactant films, which holds relevance to a range of applications, such as those where PEI is used, including CO capture, electronic devices, and gene transfection.
首次针对聚电解质的电荷密度解析了由超支化聚乙烯亚胺/十二烷基硫酸钠(PEI/SDS)聚集体在空气/水界面铺展形成的薄膜的界面结构和形态。利用一种最近开发的方法,即使用最少的材料通过聚集体解离来形成高效薄膜,这是在增强对薄膜性能的理解方面向前迈出的一步,以期其未来在技术应用中的使用。使用了能够解析不同时间和长度尺度的界面技术,即椭圆偏振光法、布鲁斯特角显微镜法和中子反射法。在将亚相调节至pH 4或10(分别对应聚电解质的高电荷密度和低电荷密度)时,在薄膜压缩过程中,两种组分的扩展结构在带有结合聚电解质的表面活性剂单层之下形成。刚性薄膜与pH 4时界面结构中PEI的紧密构象有关,而在pH 10时观察到聚集体仍嵌入在可移动的薄膜中。将单层中的表面活性剂压缩到与在不存在聚电解质时其最大覆盖率相同程度的能力,与涉及线性聚电解质的铺展薄膜所观察到的行为不同,有趣的是,证据表明在整个表面压力范围内都形成了扩展结构。我们得出结论,分子结构和电荷密度可能是控制铺展的聚电解质/表面活性剂薄膜结构和性能的重要参数,这与一系列应用相关,例如使用PEI的那些应用,包括二氧化碳捕获、电子设备和基因转染。