Teitel J M
J Cell Physiol. 1986 Aug;128(2):329-36. doi: 10.1002/jcp.1041280227.
Cultures of human vascular endothelial cells were used to study the phenomenon of density-dependent inhibition of cell growth. Endothelial cells were disrupted by nitrogen cavitation, and a plasma membrane-enriched fraction was prepared by differential centrifugation followed in some cases by sucrose density gradient fractionation. Membrane suspension was added to low-density early-passage endothelial cultures grown in microwells. Hemocytometer cell counts and 6 hr 3H-thymidine pulses were performed in triplicate wells at varying intervals. Plasma membranes suppressed cell proliferation in a reversible, dose-dependent fashion. Increasing the ambient concentration of endothelial cell growth factor did not alter the inhibitory effect. The antiproliferative effect was sensitive to heat and trypsin and to incubation with 0.1 M sodium carbonate, pH 11.5. Membrane vesicles selectively derived from the apical cell surface also suppressed proliferation. This phenomenon showed at least some specificity for cell type and species in both human and bovine models. Therefore, cell-cell contact is capable of regulating endothelial cell proliferation in vitro despite the presence of available growth surfaces and of optimally supportive culture medium.