Suppr超能文献

使用基于广义连接性的层次结构接近密度泛函理论的耦合簇精度。

Approaching Coupled Cluster Accuracy with Density Functional Theory Using the Generalized Connectivity-Based Hierarchy.

机构信息

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

出版信息

J Chem Theory Comput. 2023 Jul 11;19(13):3763-3778. doi: 10.1021/acs.jctc.3c00301. Epub 2023 Jun 20.

Abstract

This Perspective reviews connectivity-based hierarchy (CBH), a systematic hierarchy of error-cancellation schemes developed in our group with the goal of achieving chemical accuracy using inexpensive computational techniques ("coupled cluster accuracy with DFT"). The hierarchy is a generalization of Pople's isodesmic bond separation scheme that is based only on the structure and connectivity and is applicable to any organic and biomolecule consisting of covalent bonds. It is formulated as a series of rungs involving increasing levels of error cancellation on progressively larger fragments of the parent molecule. The method and our implementation are discussed briefly. Examples are given for the applications of CBH involving (1) energies of complex organic rearrangement reactions, (2) bond energies of biofuel molecules, (3) redox potentials in solution, (4) p predictions in the aqueous medium, and (5) theoretical thermochemistry combining CBH with machine learning. They clearly show that near-chemical accuracy (1-2 kcal/mol) is achieved for a variety of applications with DFT methods . They demonstrate conclusively that seemingly disparate results, often seen with different density functionals in many chemical applications, are due to an in the smaller local molecular fragments that can be easily corrected with higher-level calculations on those small units. This enables the method to achieve the accuracy of the high level of theory (e.g., coupled cluster) while the cost remains that of DFT. The advantages and limitations of the method are discussed along with areas of ongoing developments.

摘要

这篇观点文章回顾了基于连接性的层次结构(CBH),这是我们小组开发的一种系统的错误消除方案层次结构,旨在使用廉价的计算技术实现化学精度(“使用密度泛函理论实现耦合簇精度”)。该层次结构是基于结构和连接性的 Pople 等电子键分离方案的推广,适用于任何由共价键组成的有机和生物分子。它被构造成一系列梯级,涉及在母体分子的越来越大的片段上逐步增加错误消除的水平。简要讨论了该方法和我们的实现。给出了涉及(1)复杂有机重排反应的能量、(2)生物燃料分子的键能、(3)溶液中的氧化还原电位、(4)在水介质中的 p 预测以及(5)结合 CBH 与机器学习的理论热化学的 CBH 应用的示例。它们清楚地表明,对于各种应用,DFT 方法可以实现接近化学精度(1-2 kcal/mol)。它们确凿地表明,在许多化学应用中,不同密度泛函通常会产生看似不同的结果,这是由于较小的局部分子片段中的 ,可以通过对这些小单元进行更高水平的计算轻松纠正。这使得该方法能够在保持 DFT 成本的情况下实现理论(例如,耦合簇)的精度。还讨论了该方法的优缺点以及正在进行的发展领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验