Suppr超能文献

用于预测术后并发症的机器学习仪表板的以用户为中心的设计。

User-Centered Design of a Machine Learning Dashboard for Prediction of Postoperative Complications.

作者信息

Fritz Bradley A, Pugazenthi Sangami, Budelier Thaddeus P, Tellor Pennington Bethany R, King Christopher R, Avidan Michael S, Abraham Joanna

机构信息

From the Department of Anesthesiology.

Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri.

出版信息

Anesth Analg. 2024 Apr 1;138(4):804-813. doi: 10.1213/ANE.0000000000006577. Epub 2023 Jun 20.

Abstract

BACKGROUND

Machine learning models can help anesthesiology clinicians assess patients and make clinical and operational decisions, but well-designed human-computer interfaces are necessary for machine learning model predictions to result in clinician actions that help patients. Therefore, the goal of this study was to apply a user-centered design framework to create a user interface for displaying machine learning model predictions of postoperative complications to anesthesiology clinicians.

METHODS

Twenty-five anesthesiology clinicians (attending anesthesiologists, resident physicians, and certified registered nurse anesthetists) participated in a 3-phase study that included (phase 1) semistructured focus group interviews and a card sorting activity to characterize user workflows and needs; (phase 2) simulated patient evaluation incorporating a low-fidelity static prototype display interface followed by a semistructured interview; and (phase 3) simulated patient evaluation with concurrent think-aloud incorporating a high-fidelity prototype display interface in the electronic health record. In each phase, data analysis included open coding of session transcripts and thematic analysis.

RESULTS

During the needs assessment phase (phase 1), participants voiced that (a) identifying preventable risk related to modifiable risk factors is more important than nonpreventable risk, (b) comprehensive patient evaluation follows a systematic approach that relies heavily on the electronic health record, and (c) an easy-to-use display interface should have a simple layout that uses color and graphs to minimize time and energy spent reading it. When performing simulations using the low-fidelity prototype (phase 2), participants reported that (a) the machine learning predictions helped them to evaluate patient risk, (b) additional information about how to act on the risk estimate would be useful, and (c) correctable problems related to textual content existed. When performing simulations using the high-fidelity prototype (phase 3), usability problems predominantly related to the presentation of information and functionality. Despite the usability problems, participants rated the system highly on the System Usability Scale (mean score, 82.5; standard deviation, 10.5).

CONCLUSIONS

Incorporating user needs and preferences into the design of a machine learning dashboard results in a display interface that clinicians rate as highly usable. Because the system demonstrates usability, evaluation of the effects of implementation on both process and clinical outcomes is warranted.

摘要

背景

机器学习模型可帮助麻醉科临床医生评估患者并做出临床和操作决策,但要使机器学习模型的预测能促使临床医生采取有助于患者的行动,就需要设计良好的人机界面。因此,本研究的目的是应用以用户为中心的设计框架,创建一个用于向麻醉科临床医生展示术后并发症机器学习模型预测结果的用户界面。

方法

25名麻醉科临床医生(主治麻醉医生、住院医生和注册护士麻醉师)参与了一项分三个阶段的研究,该研究包括(第1阶段)半结构化焦点小组访谈和卡片分类活动,以描述用户工作流程和需求;(第2阶段)结合低保真静态原型显示界面的模拟患者评估,随后进行半结构化访谈;以及(第3阶段)在电子健康记录中结合高保真原型显示界面并同时进行出声思考的模拟患者评估。在每个阶段,数据分析包括对会话记录进行开放式编码和主题分析。

结果

在需求评估阶段(第1阶段),参与者表示:(a)识别与可改变风险因素相关的可预防风险比不可预防风险更重要;(b)全面的患者评估遵循一种严重依赖电子健康记录的系统方法;(c)一个易于使用的显示界面应该有一个简单的布局,使用颜色和图表来尽量减少阅读所花费的时间和精力。在使用低保真原型进行模拟时(第2阶段),参与者报告说:(a)机器学习预测有助于他们评估患者风险;(b)关于如何根据风险估计采取行动的更多信息会很有用;(c)存在与文本内容相关的可纠正问题。在使用高保真原型进行模拟时(第3阶段),可用性问题主要与信息呈现和功能有关。尽管存在可用性问题,但参与者在系统可用性量表上对该系统的评分很高(平均得分82.5;标准差10.5)。

结论

将用户需求和偏好纳入机器学习仪表板的设计中,会产生一个临床医生认为高度可用的显示界面。由于该系统显示出了可用性,因此有必要评估其实施对流程和临床结果的影响。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验