Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States.
Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States.
ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31711-31719. doi: 10.1021/acsami.3c04805. Epub 2023 Jun 20.
Mn-based cation-disordered rocksalt oxides (Mn-DRX) are emerging as promising cathode materials for next-generation Li-ion batteries due to their high specific capacities and cobalt- and nickel-free characteristic. However, to reach the usable capacity, solid-state synthesized Mn-DRX materials require activation via postsynthetic ball milling, typically incorporating more than 20 wt % conductive carbon that adversely reduces the electrode-level gravimetric capacity. To address this issue, we first deposit amorphous carbon on the surface of the LiMnTiO (LMTO) particles to increase the electrical conductivity by 5 orders of magnitude. Although the cathode material gravimetric first charge capacity reaches 180 mAh/g, its highly irreversible behavior leads to a first discharge capacity of 70 mAh/g. Subsequently, to ensure a good electrical percolation network, the LMTO material is ball-milled with a multiwall carbon nanotube (CNT) to obtain a 78.7 wt % LMTO active material loading in the cathode electrode (LMTO-CNT). As a result, a 210 mAh/g cathode electrode gravimetric first charge and 165 mAh/g first discharge capacity values are obtained, compared to the respective capacity values of 222 and 155 mAh/g for the LMTO material ball-milled with 20 wt % SuperP C65 electrode (LMTO-SP). After 50 cycles, LMTO-CNT delivers a 121 mAh/g electrode gravimetric discharge capacity, largely outperforming the value of 44 mAh/g of LMTO-SP. Our study demonstrates that while ball milling is necessary to achieve a significant amount of capacity of LMTO, a careful selection of additives, such as CNT, effectively reduces the required carbon quantity to achieve a higher electrode gravimetric discharge capacity.
锰基阳离子无序岩盐氧化物(Mn-DRX)作为下一代锂离子电池有前途的阴极材料而受到关注,因为它们具有高比容量和无钴、无镍的特点。然而,为了达到可用的容量,固态合成的 Mn-DRX 材料需要通过后合成的球磨来激活,通常需要掺入超过 20wt%的导电碳,这会降低电极级别的重量容量。为了解决这个问题,我们首先在 LiMnTiO(LMTO)颗粒表面沉积无定形碳,将电导率提高 5 个数量级。虽然阴极材料的重量首次充电容量达到 180mAh/g,但由于其高度不可逆的行为,首次放电容量仅为 70mAh/g。随后,为了确保良好的电渗滤网络,将 LMTO 材料与多壁碳纳米管(CNT)球磨,在阴极电极中获得 78.7wt%的 LMTO 活性材料负载(LMTO-CNT)。结果,获得了 210mAh/g 的阴极电极重量首次充电和 165mAh/g 的首次放电容量值,而对于与 20wt%SuperP C65 电极(LMTO-SP)球磨的 LMTO 材料,分别为 222mAh/g 和 155mAh/g。经过 50 次循环后,LMTO-CNT 提供了 121mAh/g 的电极重量放电容量,大大超过了 LMTO-SP 的 44mAh/g 值。我们的研究表明,虽然球磨对于实现 LMTO 的大量容量是必要的,但仔细选择添加剂,如 CNT,可以有效地减少所需的碳量,从而实现更高的电极重量放电容量。