Suppr超能文献

用于可再生能源的一系列器件中具有可调层间距的公斤级石墨烯纳米带的快速制备。

Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy.

机构信息

School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China.

School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2303262120. doi: 10.1073/pnas.2303262120. Epub 2023 Jun 20.

Abstract

Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.

摘要

石墨烯纳米带(GNRs)因其独特的宽度依赖性能带隙和两侧丰富的孤对电子,分别优于石墨烯纳米片,被广泛认为是高性能电子学和催化的有趣构建块。然而,大规模生产公斤级 GNR 以实现其实际应用仍然具有挑战性。更重要的是,能够在 GNR 内插层感兴趣的纳米填充剂,可实现原位大规模分散,并保留纳米填充剂的结构稳定性和性能,从而增强能量转换和存储。然而,这方面的研究还很少。在此,我们报告了一种快速、低成本的冷冻-滚压-毛细压缩策略,可在公斤级规模上生产 GNR,其层间距可调,可用于原位定位一系列用于电化学能量转换和存储的功能纳米材料。具体来说,通过在液氮中连续冷冻、滚压和毛细压缩大尺寸氧化石墨烯纳米片,然后进行热解,制备得到 GNR。通过调节添加的不同尺寸纳米填充剂的量,可方便地调节 GNR 的层间距。因此,杂原子、金属单原子以及 0D、1D 和 2D 纳米材料可以很容易地原位插层到 GNR 基体中,形成丰富多样的功能纳米填充剂分散的 GNR 纳米复合材料。由于所得 GNR 纳米复合材料具有优异的电子导电性、催化活性和结构稳定性,它们在电催化、电池和超级电容器中表现出了有前景的性能。冷冻-滚压-毛细压缩策略简单、稳健且具有通用性。它可用于制备具有可调 GNR 层间距的多功能 GNR 衍生纳米复合材料,从而为电子学和清洁能源应用的未来发展提供支撑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcdf/10293823/bcf4ad0fe5d0/pnas.2303262120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验