School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, People's Republic of China.
Phys Med Biol. 2023 Jul 10;68(14). doi: 10.1088/1361-6560/ace022.
Here, we propose a dynamic residual Kaczmarz (DRK) method as an improved reconstruction method for magnetic particle imaging (MPI) to achieve a better reconstruction quality from high-noise signals.Based on the Kaczmarz (KZ) method, we introduced a residual vector to select parts of the low-noise equations for reconstruction. In each iteration, a low-noise subset was formulated based on the residual vector. Thus, the reconstruction converged to an accurate result with less noise.To evaluate the performance of the proposed method, it was compared with classical Kaczmarz-type methods and state-of-the-art regularization models. The numerical simulation results demonstrate that the DRK method can achieve better reconstruction quality than all other comparison methods at similar noise levels. It can acquire a signal-to-background ratio (SBR) that is five times higher than that of classical Kaczmarz-type methods at a 5 dB noise level. Furthermore, the DRK method can acquire up to 0.7 structural similarity (SSIM) indicators at a 5 dB noise level when combined with the non-negative fused Least absolute shrinkage and selection operator (LASSO) regularization model. In addition, a real experiment based on the OpenMPI data set validated that the proposed DRK method can be applied to real data and perform well.The experimental results demonstrate that the proposed DRK method can significantly improve the reconstruction quality of MPI when the signals contain high noise. It has the potential to be applied to MPI instruments that contain high signal noise, such as human-sized MPI instruments. It is beneficial for expanding the biomedical applications of MPI technology.
在这里,我们提出了一种动态残差 Kaczmarz(DRK)方法,作为一种改进的磁共振粒子成像(MPI)重建方法,以从高噪声信号中获得更好的重建质量。在 Kaczmarz(KZ)方法的基础上,我们引入了一个残差向量,用于选择用于重建的部分低噪声方程。在每次迭代中,根据残差向量构建一个低噪声子集。因此,重建收敛到具有较少噪声的准确结果。为了评估所提出方法的性能,将其与经典 Kaczmarz 类方法和最先进的正则化模型进行了比较。数值模拟结果表明,在相似噪声水平下,DRK 方法比所有其他比较方法都能获得更好的重建质量。在 5dB 噪声水平下,它可以获得比经典 Kaczmarz 类方法高 5 倍的信号背景比(SBR)。此外,当与非负融合最小绝对收缩和选择算子(LASSO)正则化模型结合使用时,DRK 方法可以在 5dB 噪声水平下获得高达 0.7 的结构相似性(SSIM)指标。此外,基于 OpenMPI 数据集的真实实验验证了所提出的 DRK 方法可以应用于真实数据并表现良好。实验结果表明,当信号包含高噪声时,所提出的 DRK 方法可以显著提高 MPI 的重建质量。它有可能应用于包含高信号噪声的 MPI 仪器,例如人体大小的 MPI 仪器。这有利于扩展 MPI 技术在生物医学中的应用。