Suppr超能文献

中枢模式发生器为实时适应节奏刺激而进化。

Central pattern generators evolved for real-time adaptation to rhythmic stimuli.

机构信息

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway.

Department of Informatics, University of Oslo, Oslo, Norway.

出版信息

Bioinspir Biomim. 2023 Jun 29;18(4). doi: 10.1088/1748-3190/ace017.

Abstract

For a robot to be both autonomous and collaborative requires the ability to adapt its movement to a variety of external stimuli, whether these come from humans or other robots. Typically, legged robots have oscillation periods explicitly defined as a control parameter, limiting the adaptability of walking gaits. Here we demonstrate a virtual quadruped robot employing a bio-inspired central pattern generator (CPG) that can spontaneously synchronize its movement to a range of rhythmic stimuli. Multi-objective evolutionary algorithms were used to optimize the variation of movement speed and direction as a function of the brain stem drive and the centre of mass control respectively. This was followed by optimization of an additional layer of neurons that filters fluctuating inputs. As a result, a range of CPGs were able to adjust their gait pattern and/or frequency to match the input period. We show how this can be used to facilitate coordinated movement despite differences in morphology, as well as to learn new movement patterns.

摘要

要使机器人既具有自主性又具有协作性,就需要使其运动能够适应各种外部刺激,无论是来自人类还是其他机器人。通常,腿式机器人的振荡周期被明确定义为控制参数,从而限制了步行步态的适应性。在这里,我们展示了一种虚拟四足机器人,它采用了一种受生物启发的中央模式发生器(CPG),可以自发地将其运动与一系列节奏性刺激同步。多目标进化算法被用于优化运动速度和方向的变化,分别作为脑干驱动和质心控制的函数。然后,对过滤波动输入的额外一层神经元进行了优化。结果,一系列 CPG 能够调整其步态模式和/或频率以匹配输入周期。我们展示了如何利用这一点来促进协调运动,即使存在形态差异,以及如何学习新的运动模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验