Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), 5232, Villigen PSI, Switzerland.
University of Applied Sciences Northwestern Switzerland (FHNW), 5210, Windisch, Switzerland.
Sci Rep. 2023 Jun 20;13(1):9987. doi: 10.1038/s41598-023-36395-8.
MO (M = Zn, Cu, Mn, Fe, Ce) nanoparticles (NPs) embedded in porous C with uniform diameter and dispersion were synthesized, with potential application as S-absorbents to protect catalysts from S-poisoning in catalytic hydrothermal gasification (cHTG) of biomass. S-absorption performance of MO/C was evaluated by reacting the materials with diethyl disulfide at HTG conditions (450 °C, 30 MPa, 15 min). Their S-absorption capacity followed the order CuO/C > CeO/C ≈ ZnO/C > MnO/C > FeO/C. S was absorbed in the first four through the formation of CuS, CeS, ZnS, and MnS, respectively, with a capacity of 0.17, 0.12, 0.11, and 0.09 mol mol. The structure of MO/C (M = Zn, Cu, Mn) evolved significantly during S-absorption reaction, with the formation of larger agglomerates and separation of MO particles from porous C. The formation of ZnS NPs and their aggregation in place of hexagonal ZnO crystals indicate a dissolution/precipitation mechanism. Note that aggregated ZnS NPs barely sinter under these conditions. Cu(0) showed a preferential sulfidation over CuO, the sulfidation of the latter seemingly following the same mechanism as for ZnO. In contrast, FeO/C and CeO/C showed remarkable structural stability with their NPs well-dispersed within the C matrix after reaction. MO dissolution in water (from liquid to supercritical state) was modeled and a correlation between solubility and particle growth was found, comforting the hypothesis of the importance of an Ostwald ripening mechanism. CeO/C with high structural stability and promising S-absorption capacity was suggested as a promising bulk absorbent for sulfides in cHTG of biomass.
MO(M=Zn、Cu、Mn、Fe、Ce)纳米颗粒(NPs)嵌入在具有均匀直径和分散性的多孔 C 中被合成,作为 S 吸收剂具有潜在的应用,以保护催化剂免受生物质催化热解气化(cHTG)过程中的 S 中毒。通过在 HTG 条件(450°C、30 MPa、15 min)下与二乙基二硫反应来评估 MO/C 的 S 吸收性能。它们的 S 吸收能力顺序为 CuO/C > CeO/C ≈ ZnO/C > MnO/C > FeO/C。前四种物质通过形成 CuS、CeS、ZnS 和 MnS 来吸收 S,其容量分别为 0.17、0.12、0.11 和 0.09 mol/mol。在 S 吸收反应过程中,MO/C(M=Zn、Cu、Mn)的结构发生了显著变化,形成了更大的团聚体,MO 颗粒从多孔 C 中分离出来。ZnS NPs 的形成及其在六边形 ZnO 晶体位置的聚集表明存在溶解/沉淀机制。需要注意的是,在这些条件下,聚集的 ZnS NPs 几乎不会烧结。Cu(0)优先于 CuO 进行硫化,后者的硫化似乎遵循与 ZnO 相同的机制。相比之下,FeO/C 和 CeO/C 表现出显著的结构稳定性,反应后其 NPs 在 C 基体中均匀分散。MO 在水中的溶解(从液态到超临界状态)进行了建模,并发现了溶解度与颗粒生长之间的相关性,这支持了 Ostwald 熟化机制重要性的假设。CeO/C 具有高结构稳定性和有前途的 S 吸收能力,被建议作为生物质 cHTG 中硫化物的有前途的块状吸收剂。