Mejías Herrera Rafael, Hernández Yonis, Magdama Freddy, Mostert Diane, Bothma Sheryl, Paredes Salgado Estefany Margarita, Terán Diana, González Elsa, Angulo Rodrigo, Angel Liadamith, Rodríguez Yamila, Ortega Rafael, Viljoen Altus, Marys Edgloris Elena
Universidad Central de Venezuela (UCV), Facultad de Agronomía, Laboratorio de Bacterias Fitopatógenas, Maracay, Aragua, Venezuela, Bolivarian Republic of;
Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Guayas, Ecuador.
Plant Dis. 2023 Jun 20. doi: 10.1094/PDIS-04-23-0781-PDN.
Fusarium wilt of banana (Musa spp.), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), is a major constraint to banana production worldwide (Dita et al., 2018). A strain of Foc that affects Cavendish (AAA) bananas in the tropics, called Foc tropical race 4 (TR4; VCG 01213), is of particular concern. Foc TR4 was first detected in Malaysia and Indonesia around 1990 but was restricted to Southeast Asia and northern Australia until 2012. The fungus has since been reported from Africa, the Indian subcontinent, and the Middle East (Viljoen et al., 2020). Foc TR4 was detected in Colombia in 2019 and in Perú in 2021 (Reyes-Herrera et al., 2020). The incursions into Latin America and the Caribbean (LAC) triggered global concerns, as 75% of international export bananas are produced in the region. Banana production in Venezuela, however, is primarily intended for domestic consumption (Aular and Casares, 2011). In 2021 the country produced 533,190 metric tons of banana on an area of 35,896 ha, with an approximate yield of 14,853 kg/ha (FAOSTAT, 2023). In July 2022, severe leaf-yellowing, and wilting, along with internal vascular discoloration of the pseudostem, were noted in Cavendish banana plants cultivar 'Valery' in the states of Aragua (10°11'8″N; 67°34'51″W), Carabobo (10º14'24″N; 67º48'51″W), and Cojedes (9°37'44″N; 68°55'4″W). Necrotic strands from the pseudostems of diseased plants were collected for identification of the causal agent using DNA-based techniques, vegetative compatibility group (VCG) analysis and pathogenicity testing. The samples were first surface disinfected and plated onto potato dextrose agar medium. Single-spored isolates were identified as F. oxysporum based on cultural and morphological characteristics, including white colonies with purple centres, infrequent macroconidia, abundant microconidia on short monophialides, and terminal or intercalary chlamydospores (Leslie and Summerell, 2006). Foc TR4 was identified from five isolates by endpoint and quantitative-PCR using four different primer sets (Li et al. 2013; Dita et al. 2010; Aguayo et al. 2017; Matthews et al. 2020). The same isolates were identified as VCG 01213 by successfully pairing nitrate non-utilizing (nit-1) mutants of the unknown strains with Nit-M testers of Foc TR4 available at Stellenbosch University (Leslie and Summerell, 2006). For pathogenicity testing, 3-month-old Cavendish banana plants cultivar 'Williams' were inoculated with isolates from Venezuela grown on sterile millet seed (Viljoen et al., 2017). Plants developed typical Fusarium wilt symptoms 60 days after inoculation, including yellowing of leaves that progressed from the older to the younger leaves, wilting, and internal discoloration of the pseudostem. Koch's postulates were fulfilled by reisolating and identifying Foc TR4 from the plants by qPCR (Matthews et al., 2020). These results provide scientific proof of the presence of Foc TR4 in Venezuela. The Venezuelan Plant Protection Organization (INSAI) has declared Foc TR4 as a newly introduced pest (January 19, 2023), and infested banana fields were placed under quarantine. Comprehensive surveys are now conducted in all production areas in Venezuela to assess the presence and impact of Foc TR4, and information campaigns were started to make farmers aware of biosecurity protocols. Collaborative initiatives and coordinated actions among all stakeholders are needed to prevent the spread of Foc TR4 to other countries in Latin America, and to develop Foc TR4-resistant bananas (Figueiredo et al. 2023).
香蕉枯萎病(香蕉属)由土壤传播真菌尖孢镰刀菌古巴专化型(Foc)引起,是全球香蕉生产的主要制约因素(Dita等人,2018年)。一种影响热带地区卡文迪什(AAA)香蕉的Foc菌株,称为Foc热带4号小种(TR4;营养体亲和群01213),尤其令人担忧。Foc TR4于1990年左右首次在马来西亚和印度尼西亚被发现,但直到2012年一直局限于东南亚和澳大利亚北部。此后,该真菌在非洲、印度次大陆和中东地区也有报道(Viljoen等人,2020年)。2019年在哥伦比亚和2021年在秘鲁检测到了Foc TR4(Reyes-Herrera等人,2020年)。其传入拉丁美洲和加勒比地区引发了全球关注,因为该地区生产了75%的国际出口香蕉。然而,委内瑞拉的香蕉生产主要供国内消费(Aular和Casares,2011年)。2021年,该国在35896公顷的土地上生产了533190公吨香蕉,平均产量约为14853千克/公顷(联合国粮食及农业组织统计数据库,2023年)。2022年7月,在阿拉瓜州(北纬10°11'8″;西经67°34'51″)、卡拉沃沃州(北纬10º14'24″;西经67º48'51″)和科赫德斯州(北纬9°37'44″;西经68°55'4″)的卡文迪什香蕉品种“瓦莱丽”植株上,发现了严重的叶片黄化、枯萎以及假茎内部维管束变色的情况。从患病植株的假茎上采集坏死组织条,利用基于DNA的技术、营养体亲和群(VCG)分析和致病性测试来鉴定病原菌。样本首先进行表面消毒,然后接种到马铃薯葡萄糖琼脂培养基上。根据培养和形态特征,包括中心为紫色的白色菌落、罕见的大分生孢子、短单瓶梗上丰富的小分生孢子以及顶生或间生厚垣孢子,将单孢分离物鉴定为尖孢镰刀菌(Leslie和Summerell,2006年)。使用四种不同的引物组,通过终点PCR和定量PCR从五个分离物中鉴定出Foc TR4(Li等人,2013年;Dita等人,2010年;Aguayo等人,2017年;Matthews等人,2020年)。通过将未知菌株的硝酸盐非利用(nit-1)突变体与斯泰伦博斯大学提供的Foc TR4的Nit-M测试菌株成功配对,将相同的分离物鉴定为VCG 01213(Leslie和Summerell,2006年)。为了进行致病性测试,用在无菌小米种子上生长的来自委内瑞拉的分离物接种3个月大的卡文迪什香蕉品种“威廉姆斯”植株(Viljoen等人,2017年)。接种后60天,植株出现了典型的镰刀菌枯萎病症状,包括叶片从老叶向幼叶变黄、枯萎以及假茎内部变色。通过qPCR从植株中重新分离并鉴定出Foc TR4,从而验证了科赫法则(Matthews等人,2020年)。这些结果为委内瑞拉存在Foc TR4提供了科学证据。委内瑞拉植物保护组织(INSAI)已宣布Foc TR4为新传入的有害生物(2023年1月19日),受侵染的香蕉田已被隔离。目前正在委内瑞拉的所有生产地区进行全面调查,以评估Foc TR4的存在情况和影响,并开展宣传活动,让农民了解生物安全协议。需要所有利益相关者之间的合作举措和协调行动,以防止Foc TR4传播到拉丁美洲的其他国家,并培育抗Foc TR4的香蕉(Figueiredo等人,2023年)。