College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31543-31551. doi: 10.1021/acsami.3c06007. Epub 2023 Jun 21.
Lithium (Li) metal is considered as a promising anode candidate for high-energy-density batteries. However, the high reactivity of Li metal leads to poor air stability, limiting its practical application. Additionally, the interfacial instability, such as dendrite growth and an unstable solid electrolyte interphase layer, further complicates its utilization. Herein, a dense lithium fluoride (LiF)-rich interfacial protective layer is constructed on the Li surface through a simple reaction between Li and fluoroethylene carbonate (denoted as LiF@Li). The LiF-rich interfacial protective layer consists of both organic (ROCOLi and C-F-containing species, which only exist on the outer layer) and inorganic (LiF and LiCO, distribute throughout the layer) components with a thickness of ∼120 nm. Specifically, chemically stable LiF and LiCO play an important role in blocking air and hence improve the air durability of LiF@Li anodes. Notably, LiF with high Li diffusivity facilitates uniform Li deposition, while organic components with high flexibility relieve volume change upon cycling, thereby enhancing the dendrite inhibition capacity of LiF@Li. Consequently, LiF@Li exhibits remarkable stability and excellent electrochemical performance in both symmetric cells and LiFePO full cells. Moreover, LiF@Li maintains its initial color and morphology even after air exposure for 30 min, and the air-exposed LiF@Li anode still retains its superior electrochemical performance, further establishing its outstanding air-defendable capability. This work proposes a facile approach in constructing air-stable and dendrite-free Li metal anodes toward reliable Li metal batteries.
金属锂(Li)被认为是高能量密度电池的一种很有前途的阳极候选材料。然而,Li 金属的高反应性导致其空气稳定性差,限制了其实际应用。此外,界面不稳定性,如枝晶生长和不稳定的固体电解质界面层,进一步使其利用复杂化。在此,通过 Li 与氟代碳酸乙烯酯(记为 LiF@Li)之间的简单反应,在 Li 表面构建了一层致密的富氟化锂(LiF)界面保护层。富 LiF 的界面保护层由有机(ROCOLi 和含有 C-F 的物质,仅存在于外层)和无机(LiF 和 LiCO,分布在整个层中)组分组成,厚度约为 120nm。具体而言,化学稳定的 LiF 和 LiCO 在阻止空气方面起着重要作用,从而提高了 LiF@Li 阳极的空气耐久性。值得注意的是,具有高 Li 扩散率的 LiF 有利于均匀的 Li 沉积,而具有高柔韧性的有机成分在循环过程中缓解体积变化,从而增强了 LiF@Li 的抑制枝晶能力。因此,LiF@Li 在对称电池和 LiFePO4 全电池中均表现出显著的稳定性和出色的电化学性能。此外,即使在暴露于空气 30 分钟后,LiF@Li 仍保持其初始颜色和形态,暴露于空气的 LiF@Li 阳极仍保持其卓越的电化学性能,进一步证明了其出色的空气防御能力。这项工作提出了一种构建空气稳定和无枝晶 Li 金属阳极的简便方法,用于可靠的 Li 金属电池。