Suppr超能文献

基于穆勒矩阵光学相干断层扫描的多分类斑马鱼发育定量表征。

Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT.

作者信息

Li Ke, Liu Bin, Wang Zaifan, Li Yao, Li Hui, Wu Shulian, Li Zhifang

机构信息

Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.

Bionovel Lab, Guangzhou, Guangdong, 510407, China.

出版信息

Biomed Opt Express. 2023 May 25;14(6):2889-2904. doi: 10.1364/BOE.488614. eCollection 2023 Jun 1.

Abstract

Organ development analysis plays an important role in assessing an individual' s growth health. In this study, we present a non-invasive method for the quantitative characterization of zebrafish multiple organs during their growth, utilizing Mueller matrix optical coherence tomography (Mueller matrix OCT) in combination with deep learning. Firstly, Mueller matrix OCT was employed to acquire 3D images of zebrafish during development. Subsequently, a deep learning based U-Net network was applied to segment various anatomical structures, including the body, eyes, spine, yolk sac, and swim bladder of the zebrafish. Following segmentation, the volume of each organ was calculated. Finally, the development and proportional trends of zebrafish embryos and organs from day 1 to day 19 were quantitatively analyzed. The obtained quantitative results revealed that the volume development of the fish body and individual organs exhibited a steady growth trend. Additionally, smaller organs, such as the spine and swim bladder, were successfully quantified during the growth process. Our findings demonstrate that the combination of Mueller matrix OCT and deep learning effectively quantify the development of various organs throughout zebrafish embryonic development. This approach offers a more intuitive and efficient monitoring method for clinical medicine and developmental biology studies.

摘要

器官发育分析在评估个体生长健康方面发挥着重要作用。在本研究中,我们提出了一种非侵入性方法,利用穆勒矩阵光学相干断层扫描(Mueller matrix OCT)结合深度学习对斑马鱼多个器官在其生长过程中的发育进行定量表征。首先,使用穆勒矩阵光学相干断层扫描获取斑马鱼发育过程中的三维图像。随后,应用基于深度学习的U-Net网络对包括斑马鱼的身体、眼睛、脊柱、卵黄囊和鳔在内的各种解剖结构进行分割。分割后,计算每个器官的体积。最后,对斑马鱼胚胎和器官从第1天到第19天的发育和比例趋势进行了定量分析。获得的定量结果表明,鱼体和各个器官的体积发育呈现出稳定的增长趋势。此外,较小的器官,如脊柱和鳔,在生长过程中也成功地进行了量化。我们的研究结果表明,穆勒矩阵光学相干断层扫描和深度学习的结合有效地量化了斑马鱼胚胎发育过程中各个器官的发育情况。这种方法为临床医学和发育生物学研究提供了一种更直观、高效的监测方法。

相似文献

1
Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT.
Biomed Opt Express. 2023 May 25;14(6):2889-2904. doi: 10.1364/BOE.488614. eCollection 2023 Jun 1.
2
Quantitative Characterization of Zebrafish Caudal Fin Regeneration Based on Mueller Matrix OCT In Vivo.
J Biophotonics. 2024 Nov;17(11):e202400376. doi: 10.1002/jbio.202400376. Epub 2024 Sep 25.
5
Single-shot Mueller-matrix imaging of zebrafish tissues: In vivo analysis of developmental and pathological features.
J Biophotonics. 2022 Sep;15(9):e202200088. doi: 10.1002/jbio.202200088. Epub 2022 Jun 15.
9
Zebrafish structural development in Mueller-matrix scanning microscopy.
Sci Rep. 2019 Dec 27;9(1):19974. doi: 10.1038/s41598-019-56610-9.
10
Automatic geographic atrophy segmentation using optical attenuation in OCT scans with deep learning.
Biomed Opt Express. 2022 Feb 7;13(3):1328-1343. doi: 10.1364/BOE.449314. eCollection 2022 Mar 1.

引用本文的文献

1
Valproate-Induced Model of Autism in Adult Zebrafish: A Systematic Review.
Cells. 2025 Jan 13;14(2):109. doi: 10.3390/cells14020109.
2
30 Years of Optical Coherence Tomography: introduction to the feature issue.
Biomed Opt Express. 2023 Sep 26;14(10):5484-5487. doi: 10.1364/BOE.505569. eCollection 2023 Oct 1.

本文引用的文献

1
Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review.
Bioengineering (Basel). 2022 Dec 20;10(1):5. doi: 10.3390/bioengineering10010005.
2
Optimized U-Net model for 3D light-sheet image segmentation of zebrafish trunk vessels.
Biomed Opt Express. 2022 Apr 21;13(5):2896-2908. doi: 10.1364/BOE.449714. eCollection 2022 May 1.
4
Development of a digital zebrafish phantom and its application to dedicated small-fish PET.
Phys Med Biol. 2022 Aug 22;67(17). doi: 10.1088/1361-6560/ac71ee.
6
Precise Dose of Folic Acid Supplementation Is Essential for Embryonic Heart Development in Zebrafish.
Biology (Basel). 2021 Dec 26;11(1):28. doi: 10.3390/biology11010028.
8
Automatic Segmentation and Cardiac Mechanics Analysis of Evolving Zebrafish Using Deep Learning.
Front Cardiovasc Med. 2021 Jun 9;8:675291. doi: 10.3389/fcvm.2021.675291. eCollection 2021.
9
Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos.
Environ Pollut. 2021 Oct 1;286:117541. doi: 10.1016/j.envpol.2021.117541. Epub 2021 Jun 7.
10
Mathematical modeling of the interaction between yolk utilization and fish growth in zebrafish, Danio rerio.
Development. 2021 May 1;148(9). doi: 10.1242/dev.193508. Epub 2021 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验